Composición de funciones (1ºBS)

De Wikipedia

Función compuesta

La función compuesta es una función formada por la aplicación sucesiva de otras dos funciones. Formalmente:

Dadas dos funciones f \colon X \rightarrow Y y g \colon Y \rightarrow Z, donde la imagen de f\; está contenida en el dominio de definición de g\;, se define la función compuesta de f\; y g\; como:

\begin{matrix} g \circ f \colon X & \rightarrow & Z  \qquad \\ \qquad \quad x & \rightarrow &  g(f(x)) \end{matrix}

Se aplica sobre el argumento la función más próxima al mismo, y al resultado del cálculo anterior se le aplica finalmente la función restante.

\begin{matrix} X & \to & \,\,\,Y\;\; & \to & Z \; \\ x & \to & f(x) & \to & g(f(x)) \end{matrix}

La expresión g \circ f se lee f compuesta con g. Nótese que se nombra, no siguiendo el orden de escritura, sino el orden en que se aplican las funciones a su argumento.

g o f, es el resultado de la aplicación sucesiva de f y de g. En el ejemplo, (g o f)(a)=@.
Aumentar
g o f, es el resultado de la aplicación sucesiva de f y de g. En el ejemplo, (g o f)(a)=@.

ejercicio

Ejemplo: Composición de funciones


Dadas las funciones: f(x) = x^2 \,    y    g(x) = sen(x) \,

a) Halla la función g\; compuesta con f\;.

b) Halla la función f\; compuesta con g\;.

ejercicio

Ejemplos: Composición de funciones


Herramientas personales
COMPARTE ESTA WEB: