Estudio gráfico (PACS)

De Wikipedia

Tabla de contenidos

Monotonía

  • Una función es creciente en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, aumenta la variable dependiente y\;.
  • Una función es decreciente en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, disminuye la variable dependiente y\;.
  • Una función es constante en un intervalo cuando al aumentar la variable independiente x\; en ese intervalo, la variable dependiente y\; no varía.

Se llama variación de una función f\; en un intervalo [a,b]\;, a lo que varía la variable dependiente de un extremo a otro del intervalo:

\Delta f_{[a,b]}=f(b)-f(a)\;

Extremos relativos: Máximos y mínimos

  • Una función y = f(x)\; tiene un máximo relativo en un punto (x_o,y_o)\; cuando y_o\; es mayor que los valores que toma la variable y\; en un intervalo entorno al punto.
  • Una función y = f(x)\; tiene un mínimo relativo en un punto (x_o,y_o)\; cuando y_o\; es menor que los valores que toma la variable y\; en un intervalo entorno al punto.

Ejercicios

ejercicio

Ejercicios resueltos: Crecimiento. Máximos y mínimos


1. En la siguiente función, indica los intervalos de crecimiento y decrecimiento, así como los máximos y mínimos relativos.

Imagen:funcion1d.png

Tendencias

Decimos que una función y=f(x)\; tiende a un valor y_o\; cuando la variable independiente tiende a un valor x_o\;, si los valores de la variable y\; se acercan a y_o\; cuando la variable x\; se acerca a x_o\;.

Simbólicamente:

\lim_{x \to x_o} f(x)=y_0

En la anterior expresión la tendencia de la variable independiente puede ser a +\infty o - \infty en vez de x_o\;. Igualmente, la tendencia de la variable dependiente puede ser a +\infty y - \infty en vez de a un valor y_o\;.

Así cuando, por ejemplo, la variable x\; se haga infinitamente grande y los correspondientes valores de la función se acerquen a un valor y_o\;, escribiremos:

\lim_{x \to +\infty} f(x)=y_0

ejercicio

Actividad interactiva: Tendencias


1. Estudia la tendencia del crecimiento de una población de buhos.
2. Estudia la tendencia de esta función.

ejercicio

Ejercicio: Tendencia de una función


1. Compramos un coche por 12.000 €, y cada año que pasa su precio se devalua un 20%.

a) Haz una tabla que exprese el precio del coche durante los próximos años.
b) Representa gráficamente los resultados del apartado a).
c) Encuentra una fórmula que exprese esta función.
d) ¿Cómo es la variable independiente: continua o discreta?
e) ¿Cuál es el dominio de esta función?. ¿Y su imagen?
f) ¿Cual es la tendencia de esta función segun pasan los años?
g) Describe el crecimiento e indica si tiene máximos o mínimos.

Periodicidad

Una función es periódica si su gráfica se va repitiendo a intervalos. A la longitud, T, de dicho intervalo se le llama periodo.

Se cumple:

f(x)=f(x+T),\quad \forall x \in Dom_f
Función de periodo p

Simetrías

Continuidad

  • Cuando la gráfica de una función tiene saltos bruscos (no se puede dibujar de un solo trazo) decimos que es discontinua. En caso contrario se dice que es continua. Los puntos donde se producen los saltos se llaman discontinuidades.
  • Una función diremos que es continua en un intervalo si no presenta ninguna discontinuidad en dicho intervalo, aunque pueda presentar alguna fuera del mismo.

ejercicio

Ejemplos: Continuidad


De las siguientes funciones, indica cuáles son continuas y cuáles no. Enumera las discontinuidades.

a)Imagen:funcion1d.png b)Imagen:funcion1e.png c)Imagen:funcion1f.png

Herramientas personales
* AVISO: Si los applets de Java no te funcionan debes usar Firefox, instalar Java e incluir http://maralboran.org en la lista de excepciones del panel de Java ubicado en: Panel de Control > Java > Seguridad > Editar lista de sitios