Números complejos: Operaciones en forma polar (1ºBach)

De Wikipedia

Tabla de contenidos

Multiplicación de números complejos en forma polar

ejercicio

Producto de complejos en forma polar


El producto de dos numeros complejos en forma polar es otro complejo en forma polar cuyo módulo es el producto de los módulos y el argumento la suma de los argumentos de los respectivos complejos.

r_\alpha \cdot s_\beta=(r \cdot s)_{\alpha + \beta}

Potencias de números complejos en forma polar

ejercicio

Potencia de un complejo en forma polar


La potencia n-ésima de un compejo se obtiene de la siguiente manera:

(r_\alpha)^n =(r^n)_{n \cdot \alpha}

Fórmula de Moivre

ejercicio

Fórmula de Moivre


(cos \, \alpha + i \, sen \, \alpha)^n=cos \, (n \, \alpha) + i \, sen \, (n \, \alpha)

Esta fórmula debe su nombre al matemático francés Abraham de Moivre (1667-1754).

División de números complejos en forma polar

ejercicio

División de complejos en forma polar


La división de dos numeros complejos en forma polar es otro complejo en forma polar cuyo módulo es el cociente de los módulos y el argumento la diferencia de los argumentos de los respectivos complejos.

\cfrac{r_\alpha}{s_\beta}=\Big( \cfrac{r}{s} \, \Big)_{\alpha - \beta}

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Operaciones con complejos en forma polar


(Pág. 154-155)

2a,d,e,f; 3a; 4d; 5

1; 2b,c; 3b; 4a,b,c

Radicación de números complejos en forma polar

Un número complejo w \, es una raíz n-ésima de otro complejo z \, si se cumple que w^n=z \,.

ejercicio

Raíces de un complejo


Un número complejo z=R_A \, tiene exactamente n raíces n-ésimas w=r_\alpha \, , que se obtienen de la siguiente manera:
r_\alpha :  \begin{cases} r=\sqrt[n]{R} \\  \alpha=\cfrac{A+2k \pi}{n}\, , \quad k=0,1,\cdots,(n-1) \end{cases}

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Raíces de números complejos


(Pág. 157)

2; 3; 4a; 5a,d; 7; 8a,e,f

1; 4b; 5b,c; 6; 8b,c,d

Herramientas personales
* AVISO: Si los applets de Java no te funcionan debes usar Firefox, instalar Java e incluir http://maralboran.org en la lista de excepciones del panel de Java ubicado en: Panel de Control > Java > Seguridad > Editar lista de sitios