Números irracionales: Operaciones con raíces

De Wikipedia

Tabla de contenidos

Radicales

Radical

  • Un radical es cualquier expresión del tipo:

k \cdot \sqrt[n]{a}~,~k \in \mathbb{R}
  • Si dos radicales tienen el mismo índice diremos que son homogéneos.
  • Si dos radicales tienen el mismo índice y el mismo radicando diremos que son semejantes.

Radicales equivalentes

Dos o más radicales son equivalentes si los exponentes de las potencias asociadas son equivalentes.

Reducción de radicales a índice común

La amplificación y simplificación de radicales nos va a permitir reducir radicales a índice común realizando el mínimo común múltiplo de los índice al igual que para reducir fracciones a común denominador se hacía el m.c.m. de los denominadores. No olvidemos que índice y denominador del exponente es lo mismo.

Ordenación de radicales

La reducción de radicales a índice común nos va a permitir ordenar cómodamente varios radicales:

Operaciones con radicales

Propiedades de las operaciones con radicales

ejercicio

Propiedades de las operaciones con radicales


1. \sqrt[np]{a^p}=\sqrt[n]{a}

2. \left ( \sqrt[n]{a}\right )^p=\sqrt[n]{a^p}

3. \sqrt[m]{\sqrt[n]{a}}=\sqrt[mn]{a}

4. \sqrt[n]{a} \cdot \sqrt[n]{b}=\sqrt[n]{a \cdot b}

5. \cfrac{\sqrt[n]{a}}{\sqrt[n]{b}}=\sqrt[n]{\cfrac{a}{b}}

ejercicio

Ejercicios resueltos: Radicales. Propiedades


Simplificar: a) \sqrt[12]{x^9},    b) \left ( \sqrt[3]{a^2} \right )^6,    c) \sqrt{\sqrt[3]{a}},    d) \sqrt[3]{3} \cdot \sqrt[3]{9},    e) \sqrt{12} : \sqrt{3}

Suma y resta de radicales semejantes

Para sumar y restar radicales, éstos deben ser semejantes, es decir, tener el mismo radicando y el mismo índice. En tal caso el radical el radical resultante tiene como coeficiente la suma o resta de los coeficientes de cada uno de los radicales.

ejercicio

Ejemplo: Suma y resta de radicales con el mismo índice y radicando


Efectúa las siguientes sumas y restas de radicales:

1. 3\sqrt{5}-\sqrt{5}+5\sqrt{5}

2. 3\sqrt{2}-\sqrt{3}

3. 3\sqrt[3]{2}+\sqrt{2}

Radicales (Ampliación)

Extracción e introducción de factores en un radical

El siguiente videotutorial resume lo que se va a a ver en este apartado:

Extracción de factores

ejercicio

Procedimiento


Para extraer factores de un radical se divide el exponente (m) del factor entre el índice (n) del radical. A continuación, se saca el factor elevado al cociente (c) de la división, quedando dentro del radical el factor elevado al resto (r).

\sqrt[n]{a^m}= a^c \cdot \sqrt[n]{a^r}

Para extraer factores de un radical se divide el exponente entre el índice y se saca el factor elevado al cociente de la división quedando ese factor elevado al resto.

ejercicio

Ejemplo: Extracción de factores de un radical


Extrae todo lo que se pueda de este radical: \sqrt[3]{6000}

Introducción de factores

ejercicio

Procedimiento


Para introducir un factor dentro de un radical, éste se eleva al índice del radical y el resultado se multiplica por el radicando del radical.

a \sqrt[n]{b}= \sqrt[n]{a^n \cdot b}

ejercicio

Ejemplo: Introducción de factores en un radical


Introduce los factores dentro del radical: 10 \sqrt[3]{6}

Suma y resta de radicales con el mismo índice y distinto radicando

Si tienen el mismo índice pero distinto radicando, a veces, podemos extraer factores del radical y dejarlos con el mismo radicando.

ejercicio

Ejemplo: Suma y resta de radicales con el mismo índice y distinto radicando


Resta los siguientes radicales: \sqrt{48}-\sqrt{75}


Producto y cocientes de radicales con distinto índice

Para multiplicar o dividir radicales con distinto índice, primero se reducen a índice común y luego se multiplican o dividen los radicandos.

ejercicio

Ejemplo: Producto y cocientes de radicales con distinto índice


Reduce a un solo radical \sqrt[3]{10} \cdot \sqrt[4]{5}:\sqrt{8}

Potencias de radicales

Radicales dobles (Avanzado)

Actividades

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda