Resolución de triángulos cualesquiera (1ºBach)

De Wikipedia

Teorema de los senos

ejercicio

Teorema de los senos


En un triángulo cualquiera se cumplen las siguientes igualdades:

\cfrac{a}{sen \, \hat A}=\cfrac{b}{sen \, \hat B}=\cfrac{c}{sen \, \hat C}


Además, todos estos cocientes son iguales a 2R\,, donde R\, es el radio de la circunferencia circunscrita al triángulo.

ejercicio

Ejemplo: Teorema de los senos


De un triángulo sabemos que: a = 6 m, B = 45° y C = 105°. Calcula los restantes elementos.

wolfram

Actividad: Teorema de los senos


a) Herramienta interactiva para aplicar el teorema de los senos.
b) Halla el ángulo B sabiendo que A=40º, a=6cm y b=8cm.

Teorema del coseno

ejercicio

Teorema del coseno


En un triángulo cualquiera se cumplen la siguiente relación:

c^2=a^2+b^2-2bc \, cos \, \hat C

Y analogamente:

b^2=a^2+c^2-2ac \, cos \, \hat B

a^2=b^2+c^2-2bc \, cos \, \hat A

wolfram

Actividad: Teorema del coseno


a) Herramienta interactiva para aplicar el teorema del coseno.
b) Si en un triángulo a=5cm, b=4cm y C=30º, calcula el lado c.
c) Si en un triángulo a=5cm, b=4cm y c=3cm, calcula sus ángulos.

ejercicio

Ejemplo: Teorema del coseno


Las diagonales de un paralelogramo miden 10 cm y 12 cm, y el ángulo que forman es de 48° 15'. Calcular los lados.

Ejercicios

ejercicio

Ejercicios sobre resolución de triángulos (Videotutoriales)


Herramientas personales
AVISO: Si los applets de Java no te funcionan prueba a bajar a "Media" el nivel de seguridad en: Panel de Control > Java > Seguridad > Nivel de Seguridad
COMPARTE ESTA WEB: