Transformaciones elementales de funciones (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:10 23 ene 2009
Coordinador (Discusión | contribuciones)
(Dilatación y contracción)
← Ir a diferencia anterior
Revisión de 17:13 23 ene 2009
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 14: Línea 14:
|actividad= |actividad=
En esta escena tienes la gráfica de la función <math>f(x) = x^2\;</math> (en verde) y la de <math>f(x)+1=x^2+1\;</math> (en amarillo). En esta escena tienes la gráfica de la función <math>f(x) = x^2\;</math> (en verde) y la de <math>f(x)+1=x^2+1\;</math> (en amarillo).
- 
-Prueba a cambiar el valor de <math>k\;</math>: <math>f(x)+2=x^2+2 \ , \ f(x)-3=x^2-3</math>. Compáralas con <math>f(x)\;</math>. 
- 
-Prueba a cambiar también la función <math>f(x)=x^2\;</math> por otras funciones, por ejemplo, <math>f(x)=x^3\;</math>. 
- 
-No olvides pulsar "Intro" al cambiar cada función. 
{{p}} {{p}}
Línea 29: Línea 23:
</iframe></center> </iframe></center>
<center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4a.html '''Click''' aquí si no se ve bien la escena]</center> <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4a.html '''Click''' aquí si no se ve bien la escena]</center>
 +
 +Prueba a cambiar el valor de <math>k\;</math>: <math>f(x)+2=x^2+2 \ , \ f(x)-3=x^2-3</math>. Compáralas con <math>f(x)\;</math>.
 +
 +Prueba a cambiar también la función <math>f(x)=x^2\;</math> por otras funciones, por ejemplo, <math>f(x)=x^3\;</math>.
 +
 +No olvides pulsar "Intro" al cambiar cada función.
}} }}
}} }}
Línea 40: Línea 40:
|actividad= |actividad=
En esta escena tienes la gráfica de la función <math>f(x) = x^2-2x\;</math> (en verde) y la de su simétrica <math>-f(x)=-(x^2-2x)\;</math> (en amarillo). En esta escena tienes la gráfica de la función <math>f(x) = x^2-2x\;</math> (en verde) y la de su simétrica <math>-f(x)=-(x^2-2x)\;</math> (en amarillo).
- 
-Prueba a cambiar la función <math>f(x)=x^2-2x\;</math> por otras funciones, por ejemplo, <math>f(x)=\sqrt{x}\;</math>. (Para la raíz cuadrada debes escribir '''sqrt(x)'''). 
- 
-No olvides pulsar "Intro" al cambiar cada función. 
{{p}} {{p}}
Línea 53: Línea 49:
</iframe></center> </iframe></center>
<center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4a.html '''Click''' aquí si no se ve bien la escena]</center> <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4a.html '''Click''' aquí si no se ve bien la escena]</center>
 +
 +Prueba a cambiar la función <math>f(x)=x^2-2x\;</math> por otras funciones, por ejemplo, <math>f(x)=\sqrt{x}\;</math>. (Para la raíz cuadrada debes escribir '''sqrt(x)''').
 +
 +No olvides pulsar "Intro" al cambiar cada función.
}} }}
}} }}
Línea 100: Línea 100:
|actividad= |actividad=
En esta escena tienes la gráfica de la función <math>f(x) = x^2+x-5\;</math> (en verde) y la de <math>f(x+1)=(x+1)^2+(x+1)-5\;</math> (en amarillo). En esta escena tienes la gráfica de la función <math>f(x) = x^2+x-5\;</math> (en verde) y la de <math>f(x+1)=(x+1)^2+(x+1)-5\;</math> (en amarillo).
- 
-Prueba a cambiar el valor de <math>k\;</math>: <math>f(x+2)=(x+2)^2+(x+2)-5 \ , \ f(x)-3=(x-3)^2+(x-3)-5</math>. Compáralas con <math>f(x)\;</math>. 
- 
-Prueba a cambiar también la función <math>f(x)=x^2+x-5\;</math> por otras funciones, por ejemplo, <math>f(x)=|x|\;</math>. (La función valor absoluto debes escribirla '''abs(x)'''). 
- 
-No olvides pulsar "Intro" al cambiar cada función. 
{{p}} {{p}}
Línea 115: Línea 109:
</iframe></center> </iframe></center>
<center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4c.html '''Click''' aquí si no se ve bien la escena]</center> <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4c.html '''Click''' aquí si no se ve bien la escena]</center>
 +
 +Prueba a cambiar el valor de <math>k\;</math>: <math>f(x+2)=(x+2)^2+(x+2)-5 \ , \ f(x)-3=(x-3)^2+(x-3)-5</math>. Compáralas con <math>f(x)\;</math>.
 +
 +Prueba a cambiar también la función <math>f(x)=x^2+x-5\;</math> por otras funciones, por ejemplo, <math>f(x)=|x|\;</math>. (La función valor absoluto debes escribirla '''abs(x)''').
 +
 +No olvides pulsar "Intro" al cambiar cada función.
}} }}
}} }}
Línea 126: Línea 126:
|actividad= |actividad=
En esta escena tienes la gráfica de la función <math>f(x) = x^2-2x\;</math> (en verde) y la de su simétrica <math>f(-x)=(-x)^2-2(-x)\;</math> (en amarillo). En esta escena tienes la gráfica de la función <math>f(x) = x^2-2x\;</math> (en verde) y la de su simétrica <math>f(-x)=(-x)^2-2(-x)\;</math> (en amarillo).
- 
-Prueba a cambiar la función <math>f(x)=x^2-2x\;</math> por otras funciones, por ejemplo, <math>f(x)=\cfrac{1}{x}\;</math>. 
- 
-No olvides pulsar "Intro" al cambiar cada función. 
{{p}} {{p}}
Línea 139: Línea 135:
</iframe></center> </iframe></center>
<center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4d.html '''Click''' aquí si no se ve bien la escena]</center> <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4d.html '''Click''' aquí si no se ve bien la escena]</center>
 +
 +Prueba a cambiar la función <math>f(x)=x^2-2x\;</math> por otras funciones, por ejemplo, <math>f(x)=\cfrac{1}{x}\;</math>.
 +
 +No olvides pulsar "Intro" al cambiar cada función.
}} }}
}} }}
[[Categoría: Matemáticas]][[Categoría: Funciones]] [[Categoría: Matemáticas]][[Categoría: Funciones]]

Revisión de 17:13 23 ene 2009

Tabla de contenidos

Traslación vertical

Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x)+k\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia arriba y la de f(x)-k\; desplazándola k\; unidades hacia abajo.

ejercicio

Actividad Interactiva: Traslación vertical de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada f(x) \pm k.

Simetría respecto del eje X

Las gráficas de las funciones f(x)\; y su opuesta, -f(x)\;, son simétricas respecto del eje de abscisas.

ejercicio

Actividad Interactiva: Función simétrica respecto del eje X


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su simétrica -f(x)\;.

Dilatación y contracción

  • Si k>1\;, la gráfica de la función k \cdot f(x)\; es una dilatación o estiramiento vertical de la gráfica de f(x)\;.
  • Si 0<k<1\;, la gráfica de la función k \cdot f(x)\; es una contracción o achatamiento vertical de la gráfica de f(x)\;.
  • Si -1<k<0\;, tenemos la combinacion de una contracción y una simetría respecto del eje X.
  • Si k<-1\;, tenemos la combinacion de una dilatación y una simetría respecto del eje X.

ejercicio

Actividad Interactiva: Dilatación y contracción de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada k \cdot f(x)\;.

Traslación horizontal

Sea f(x)\; una función y k>0\; un número real, entonces la gráfica de la función f(x+k)\; se obtiene a partir de la de f(x)\; desplazándola k\; unidades hacia la izquierda y la de f(x-k)\; desplazándola k\; unidades hacia la derecha.

ejercicio

Actividad Interactiva: Traslación horizontal de una función


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su transformada f(x \pm k).

Simetría respecto del eje Y

Las gráficas de las funciones f(x)\; y su opuesta, f(-x)\;, son simétricas respecto del eje de ordenadas.

ejercicio

Actividad Interactiva: Función simétrica respecto del eje Y


Actividad 1. Representación gráfica de una función f(x)\; cualquiera y de su simétrica f(-x)\;.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda