Razones trigonométricas de ángulos cualesquiera (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 20:10 20 feb 2009
Coordinador (Discusión | contribuciones)
(Signo de las razones trigonométricas)
← Ir a diferencia anterior
Revisión de 20:11 20 feb 2009
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 46: Línea 46:
{{Tabla50|celda1=<center>'''Cuadrante III <br>( seno - / cos - )''' <br> [[Imagen:goniometrica3.png|280px]]</center>|celda2=<center>'''Cuadrante IV <br>( seno - / cos + )''' <br> [[Imagen:goniometrica4.png|280px]]</center>}} {{Tabla50|celda1=<center>'''Cuadrante III <br>( seno - / cos - )''' <br> [[Imagen:goniometrica3.png|280px]]</center>|celda2=<center>'''Cuadrante IV <br>( seno - / cos + )''' <br> [[Imagen:goniometrica4.png|280px]]</center>}}
- +{{p}}
-{{Video_enlace2+
-|titulo1=Círculo Goniométrico+
-|duracion=12'55"+
-|sinopsis=+
-*Razones trigonométricas de un ángulo. Fórmula fundamental.+
-*Circúlo goniométrico.+
-*Interpretación geométrica de las razones trigonométricas.+
-*Medida en grados y radianes.+
-*Tablas de las razones trigonométricas de los ángulos principales.+
-*Signo de las razones trigonométricas segun el cuadrante del ángulo.+
-|url1=http://www.matematicasbachiller.com/videos/cdiferencial/df_t_01/vdf0119.htm+
-}}+
- +
==Razones trigonométricas de algunos ángulos importantes== ==Razones trigonométricas de algunos ángulos importantes==
A continuación las razones trigonométricas de algunos ángulos que es conveniente recordar: A continuación las razones trigonométricas de algunos ángulos que es conveniente recordar:
Línea 121: Línea 108:
{{p}} {{p}}
 +==Video==
 +{{Video_enlace2
 +|titulo1=Círculo Goniométrico
 +|duracion=12'55"
 +|sinopsis=
 +*Razones trigonométricas de un ángulo. Fórmula fundamental.
 +*Circúlo goniométrico.
 +*Interpretación geométrica de las razones trigonométricas.
 +*Medida en grados y radianes.
 +*Tablas de las razones trigonométricas de los ángulos principales.
 +*Signo de las razones trigonométricas segun el cuadrante del ángulo.
 +|url1=http://www.matematicasbachiller.com/videos/cdiferencial/df_t_01/vdf0119.htm
 +}}
[[Categoría: Matemáticas]][[Categoría: Geometría]] [[Categoría: Matemáticas]][[Categoría: Geometría]]

Revisión de 20:11 20 feb 2009

Tabla de contenidos

Circunferencia goniométrica

Vamos a establecer un sistema de referencia para el estudio de los ángulos de cualquier cuadrante.

Consideremos una circunferencia de radio 1 centrada en un sistema de referencia cartesiano, es decir, con su centro en el origen de coordenadas O. Sobre ella situaremos nuestro triángulo rectángulo ABC, haciendo coincidir su vértice A con O, el cateto contiguo al ángulo \alpha \; lo situaremos en el eje X positivo y la hipotenusa coincidiendo con el radio, tal y como se muestra en la figura. A esta circunferencia la llamaremos circunferencia goniométrica.

Teniendo en cuenta que \overline{AB} = \overline{OE}= radio = 1 y la semejanza de los triángulos ABC y ADE, las razones trigonométricas del águlo \alpha \; se expresan de la siguiente manera:


sen \, \alpha = \cfrac{\overline{CB}}{\overline{AB}}=\overline{CB}
cos \, \alpha =  \cfrac{\overline{OC}}{\overline{AB}}=\overline{OC}
tg \, \alpha = \cfrac {\overline{CB}}{\overline{OC}}=\cfrac{\overline{DE}}{\overline{OE}}=\overline{DE}

Razones trigonométricas de un ángulo cualquiera

Obsérvese como las coordenadas del punto B son (cos \, \alpha , sen \, \alpha ). Y por extensión, podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:

Dado un ángulo \alpha \,, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte del segundo lado del ángulo con la circunferencia goniométrica:

B=(cos \, \alpha , sen \, \alpha )

Signo de las razones trigonométricas

Según en qué cuadrante estemos, el segmento OC que determina al coseno, puede estar situado a la derecha o a la izquierda del origen O. Así, asignaremos signo positivo al coseno si está a la derecha de O y negativo si está a la izquierda.

Analogamente, el segmento CB que determina al seno, puede estar situado por encima o por debajo del eje X . Asignaremos signo positivo al seno si está por encima y negativo si está por debajo.

Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:

Cuadrante I
( seno + / cos + )

Cuadrante II
( seno + / cos - )

Cuadrante III
( seno - / cos - )

Cuadrante IV
( seno - / cos + )

Razones trigonométricas de algunos ángulos importantes

A continuación las razones trigonométricas de algunos ángulos que es conveniente recordar:

Radianes Grados sen cos tg cosec sec cot
0  \; 0^o \, 0 \; 1 \; 0 \; \not{\exists}  \,\! 1 \; \not{\exists}  \,\!
\frac{\pi}{6} 30^o \, \frac{1}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} 2 \, \frac{2\sqrt{3}}{3} \sqrt{3}
\frac{\pi}{4} 45^o \, \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} 1 \, \sqrt{2} \sqrt{2} 1 \,
\frac{\pi}{3} 60^o \, \frac{\sqrt{3}}{2} \frac{1}{2} \sqrt{3} \frac{2\sqrt{3}}{3} 2 \, \frac{\sqrt{3}}{3}
\frac{\pi}{2} 90^o \, 1 \; 0 \; \not{\exists}  \,\! 1 \, \not{\exists} \,\! 0 \,

Video

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda