Puntos y vectores el plano (1ºBach)
De Wikipedia
Revisión de 17:53 17 mar 2009 Coordinador (Discusión | contribuciones) (→Simétrico de un punto respecto de otro) ← Ir a diferencia anterior |
Revisión de 18:07 17 mar 2009 Coordinador (Discusión | contribuciones) (→Sistema de referencia en el plano) Ir a siguiente diferencia → |
||
Línea 7: | Línea 7: | ||
{{p}} | {{p}} | ||
==Sistema de referencia en el plano== | ==Sistema de referencia en el plano== | ||
- | {{Caja_Amarilla|texto= | + | {{Tabla75|celda2=<center>[[Imagen:sistemaref.jpg|250px]]</center> |
+ | |celda1={{Caja_Amarilla|texto= | ||
Un '''sistema de referencia''' del plano consiste en una terna {{sube|porcentaje=+20%|contenido=<math>\mathfrak{R}=\big\{O,(\overrightarrow{x},\overrightarrow{y})\big\}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\,</math>}} es un punto fijo, llamado '''origen''', y {{sube|porcentaje=+20%|contenido=<math>B(\overrightarrow{x},\overrightarrow{y})</math>}} una base de vectores del plano. | Un '''sistema de referencia''' del plano consiste en una terna {{sube|porcentaje=+20%|contenido=<math>\mathfrak{R}=\big\{O,(\overrightarrow{x},\overrightarrow{y})\big\}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\,</math>}} es un punto fijo, llamado '''origen''', y {{sube|porcentaje=+20%|contenido=<math>B(\overrightarrow{x},\overrightarrow{y})</math>}} una base de vectores del plano. | ||
Revisión de 18:07 17 mar 2009
Tabla de contenidos[esconder] |
Sistema de referencia en el plano
{{Tabla75|celda2= |celda1=Un sistema de referencia del plano consiste en una terna , donde
es un punto fijo, llamado origen, y
una base de vectores del plano.
En este sistema de referencia, cada punto del plano tiene asociado un vector fijo
, llamado vector de posición del punto
.
Si el vector tiene coordenadas
respecto de la base
, el punto
diremos que tiene coordenadas
respecto del sistema de referencia
.
Normalmente trabajaremos con un sistema de referencia en el que la base es ortonormal.
Actividad interactiva: Sistema de referencia en el plano Actividad 1: En la siguiente escena tenemos un punto |
Coordenadas del vector que une dos puntos
Actividad interactiva: Coordenadas del vector que une dos puntos
Actividad 1: En la siguiente escena tenemos dos puntos
![]() ![]() ![]() |
Condición para que tres puntos estén alineados
Condición para que tres puntos estén alineados
- Los puntos del plano
,
y
, están alineados si se cumple:

Actividad interactiva: Condición para que tres puntos estén alineados Actividad 1: En la siguiente escena comprobarás si tres los puntos, Actividad 2: En esta escena tenemos tres puntos |
Punto medio de un segmento
Actividad interactiva: Punto medio de un segmento
Activida 1: En la siguiente escena tenemos el punto medio de un segmento de extremos
![]() ![]() |
Simétrico de un punto respecto de otro
Actividad interactiva: Simétrico de un punto respecto de otro
Actividad 1: En la siguiente escena queremos calcular el punto
![]() ![]() ![]() |