Ángulo entre dos rectas del plano (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:47 23 mar 2009
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 09:56 23 mar 2009
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 25: Línea 25:
(*) '''Nota:''' En el caso en que sean perpendiculares, el producto escalar del numerador es cero y la igualdad queda <math>cos \, \alpha=0</math>, de donde <math>\alpha=90^\circ</math>. (*) '''Nota:''' En el caso en que sean perpendiculares, el producto escalar del numerador es cero y la igualdad queda <math>cos \, \alpha=0</math>, de donde <math>\alpha=90^\circ</math>.
 +}}
 +{{p}}
 +==Ángulo entre dos rectas a partir de sus pendientes==
 +{{Teorema|titulo=Proposición|enunciado=:Dadas dos rectas con pendientes <math>m\,</math> y {{sube|porcentaje=+20%|contenido=<math>m'\,</math>}}. Se verifica que
 +
 +<center><math>tg \, \phi = \Big| \cfrac{m'-m}{1+m \,m'} \Big|</math></center>
 +|demo=
 +Teniendo en cuenta que <math>m=tg \, \alpha</math> y <math>m'=tg \, \beta</math>, usando la fórmula de la tangente de la diferencia de dos ángulos, tenemos:
 +
 +:<math>tg \, \phi=tg \, (\alpha - \beta)= \Big| \cfrac{tg \, \alpha - tg \, \beta}{1+tg \, \alpha \, tg \, \beta} \Big|= \Big| \cfrac{m'-m}{1+m \,m'} \Big|</math>
 +
}} }}
{{p}} {{p}}

Revisión de 09:56 23 mar 2009

Ángulo entre dos rectas

El ángulo entre dos rectas del plano es el menor de los dos ángulos que forman éstas entre sí.

Ángulo entre dos rectas a partir de sus vectores de dirección

ejercicio

Proposición


Dadas dos rectas con vectores de dirección \overrightarrow{d} y \overrightarrow{d'}, y sea \alpha \, el ángulo que forman. Se verifica que
cos \, \alpha = \cfrac{|\overrightarrow{d} \cdot \overrightarrow{d'}|}{|\overrightarrow{d}||\overrightarrow{d'}|}

Ángulo entre dos rectas a partir de sus pendientes

ejercicio

Proposición


Dadas dos rectas con pendientes m\, y m'\,. Se verifica que
tg \, \phi = \Big| \cfrac{m'-m}{1+m \,m'} \Big|

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda