La circunferencia (1ºBach)
De Wikipedia
Revisión de 07:45 24 mar 2009 Coordinador (Discusión | contribuciones) (→Posiciones relativas de una recta y de una circunferencia) ← Ir a diferencia anterior |
Revisión de 17:15 24 mar 2009 Coordinador (Discusión | contribuciones) (→Posiciones relativas de una recta y de una circunferencia) Ir a siguiente diferencia → |
||
Línea 103: | Línea 103: | ||
|enunciado='''Actividad 1:''' En esta escena vamos a hallar la posición relativa de la recta <math>r: \, 2x-y-1=0</math> y una circunferencia <math>s: \, x^2+y^2-2x-2y-1=0</math>. | |enunciado='''Actividad 1:''' En esta escena vamos a hallar la posición relativa de la recta <math>r: \, 2x-y-1=0</math> y una circunferencia <math>s: \, x^2+y^2-2x-2y-1=0</math>. | ||
- | |actividad=Primero vamos a poner la ecuación de la recta en forma explícita, para poder comprobar los resultados en la escena. | + | |actividad= |
+ | Para poder comprobar los resultados en la escena, vamos a poner la ecuación de la recta en forma explícita, | ||
Línea 128: | Línea 129: | ||
</iframe></center> | </iframe></center> | ||
<center>[http://maralboran.org/web_ma/descartes/Geometria/circunferencia/circunferencia_tres_1.html '''Click''' aquí si no se ve bien la escena]</center> | <center>[http://maralboran.org/web_ma/descartes/Geometria/circunferencia/circunferencia_tres_1.html '''Click''' aquí si no se ve bien la escena]</center> | ||
+ | |||
+ | Los puntos de corte se averiguan resolviendo el sistema: <math> | ||
+ | \begin{cases} | ||
+ | y=2x-1 | ||
+ | \\ | ||
+ | x^2+y^2-2x-2y-1=0 | ||
+ | \end{cases} \rightarrow (por sustitución) \rightarrow \;x^2+(2x-1)^2-2x-2(2x-1)-1=0 | ||
+ | </math> | ||
Revisión de 17:15 24 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Circunferencia
La circunferencia de centro y radio
, es el lugar geométrico de los puntos
, cuya distancia al centro es
.

Ecuación de la circunferencia
De la anterior definición, utilizando la fórmula de la distancia entre dos puntos, tenemos:
La ecuación de la circunferencia de centro y radio
, es:
|
Proposición
La ecuación de una circunferencia de centro y radio
, es:
|
donde: .
Partiendo de la ecuación de la circunferencia:

Elevando al cuadrado ambos términos:

y desarrollando el radicando:

Agrupando términos:


Corolario
Dada la circunferencia de ecuación , su centro y su radio vienen dados por:
|
Es inmediato a partir de la proposición anterior, despejando



Actividad Interactiva: Ecuación de la circunferencia
Actividad 1: En esta escena vamos a hallar la ecuación de la circunferencia de centro
![]() ![]() Actividad: Hallamos la ecuación de la cirecunferencia: ![]() Elevando al cuadrado ambos miembros y desarrollando; ![]()
Ejercicio: Mueve el punto X a otro punto de la circunferencia y comprueba que sus coordenadas verifican su ecuación. Observa como el radio no varía. Nota: La ecuación de la circunferencia (en rojo) es editable. Prueba a cambiarla por otras ecuaciones de circunferencia para ver sus gráficas. |
Posiciones relativas de una recta y de una circunferencia
Una recta y una circunferencia
pueden ser:
- Secantes: si se cortan en 2 puntos.
- Tangentes: si se cortan en un punto.
- Exteriores: si no se cortan.
Los puntos de corte se averiguan resolviendo el sistema:
(Nota: Las ecuaciones de la recta y de la circunferencia nos las pueden dar en otra forma.)
Actividad Interactiva: Posición relativa de recta y circunferencia
Actividad 1: En esta escena vamos a hallar la posición relativa de la recta
![]() ![]() Actividad: Para poder comprobar los resultados en la escena, vamos a poner la ecuación de la recta en forma explícita,
Su representación gráfica puedes verla en esta escena:
Los puntos de corte se averiguan resolviendo el sistema:
![]() ![]() |