La elipse (1ºBach)
De Wikipedia
Revisión de 16:19 31 mar 2009 Coordinador (Discusión | contribuciones) (→Excentricidad de la elipse) ← Ir a diferencia anterior |
Revisión de 16:20 31 mar 2009 Coordinador (Discusión | contribuciones) (→Ecuación de la elipse con los focos en el eje Y) Ir a siguiente diferencia → |
||
Línea 162: | Línea 162: | ||
{{Caja|contenido=<math>\cfrac{x^2}{b^2}+\cfrac{y^2}{a^2}=1</math>}} | {{Caja|contenido=<math>\cfrac{x^2}{b^2}+\cfrac{y^2}{a^2}=1</math>}} | ||
- | *Su excentricidad es: <math>exc=\cfrac{a}{c}</math> | + | *Su excentricidad es: <math>e=\cfrac{a}{c}</math> |
}} | }} | ||
{{p}} | {{p}} |
Revisión de 16:20 31 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Elementos de la elipse
Una una elipse de focos
| ![]() |
Excentricidad de la elipse
La escentricidad de la elipse es el cociente entre la distancia focal y el eje mayor:

Propiedades
.
- La excentricidad mide el achatamiento de la elipse: cuanto más próxima a 1 más se parece a a una circunferencia.
- Como la hipotenusa del triángulo rectángulo es mayor que los catetos, tenemos que
- y como
y
, tenemos que
- Cuanto más próxima a 1 sea la excentricidad, más proximos son
y
y, por tanto, más se aproxima
a cero.
Actividad interactiva: Excentricidad de la elipse
Actividad 1: En la siguiente escena vamos a ver como se ve afectada la elipse si modificamos su excentricidad.
Actividad: Ejercicios:
|
Ecuación reducida de la elipse
Ecuación reducida de la elipse
- La ecuación de una elipse con semieje mayor
y semieje menor
, con centro en el origen de coordenadas y focos en el eje de abscisas es:
|
Sean y
los focos de la elipse. Cualquier punto P(x,y) de la misma cumple:

Sustituyendo las distancias por su fórmula matemática:

Pasamos la segunda raíz al segundo miembro:

Se elevan al cuadrado ambos miebros y se simplifica:



Se elevan al cuadrado los dos miembros:

Reordenando y agrupando términos:

Teniendo en cuenta que :

Dividiendo la expresión por :
se obtiene la cuación buscada:

Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación reducida de la elipse de semiejes 5 y 9.
Actividad: La ecuación reducida viene dada por la fórmula: ![]() Sustituyendo a=5 y b=3, tenemos: ![]() Puedes ver su gráfica en la siguente escena: Ejercicio:
|
Ecuación de la elipse con los focos en el eje Y
Ecuación de la elipse con los focos en el eje Y
- La ecuación de una elipse con semieje mayor
y semieje menor
, con centro en el origen de coordenadas y focos en el eje de ordenadas es:
|
- Su excentricidad es:
Ecuación de la elipse con el centro desplazado del origen de coordenadas
Ecuación de la elipse con el centro desplazado del origen
- La ecuación de una elipse con semiejes
y
y centro
es:
|
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación de la elipse de centro O(3,-1) y semiejes 5 y 2.
Actividad: La ecuación reducida viene dada por la fórmula: ![]() Sustituyendo ![]() Puedes ver su gráfica en la siguente escena: Ejercicio:
|