La hipérbola (1ºBach)
De Wikipedia
Revisión de 19:05 31 mar 2009 Coordinador (Discusión | contribuciones) (→Excentricidad de la elipse) ← Ir a diferencia anterior |
Revisión de 19:14 31 mar 2009 Coordinador (Discusión | contribuciones) (→Elementos de la hipérbola) Ir a siguiente diferencia → |
||
Línea 19: | Línea 19: | ||
*<math>c^2=a^2+b^2\,</math> | *<math>c^2=a^2+b^2\,</math> | ||
*<math>c>a\,</math> | *<math>c>a\,</math> | ||
+ | *Las asíntotas tienen pendientes <math>\cfrac{b}{a}</math> y <math>-\cfrac{b}{a}</math>. | ||
|demo= | |demo= | ||
*La constante de la hipérbola es <math>k=2a\,</math>, ya que, al ser <math>A\,</math> un punto de la hipérbola: | *La constante de la hipérbola es <math>k=2a\,</math>, ya que, al ser <math>A\,</math> un punto de la hipérbola: | ||
Línea 31: | Línea 32: | ||
*Por ser <math>c\,</math> la hipotenusa y <math>a\,</math> un cateto, tenemos que <math>c>a\,</math>. | *Por ser <math>c\,</math> la hipotenusa y <math>a\,</math> un cateto, tenemos que <math>c>a\,</math>. | ||
+ | |||
+ | *La pendiente se calcula como la tangente del ángulo que forma la recta con el eje X. Para la asíntota creciente, la pendiente es: | ||
+ | |||
+ | <center><math>tg \, \alpha=\cfrac{b}{a}</math></center> | ||
+ | |||
+ | y para la decreciente, es igual pero con signo opuesto. | ||
}} | }} | ||
}} | }} |
Revisión de 19:14 31 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Elementos de la hipérbola
Excentricidad de la hipérbola
La excentricidad es un parámetro que determina el grado de desviación de una sección cónica con respecto a una circunferencia.
La excentricidad de la hipérbola es el cociente entre la distancia focal y el eje:
Propiedades
- En una hipérbola .
- Como la hipotenusa del triángulo rectángulo es mayor que los catetos, tenemos que
Actividad interactiva: Excentricidad de la hipérbola
Actividad 1: En la siguiente escena vamos a ver como se ve afectada la hipérbola si modificamos su excentricidad.
Actividad: Ejercicios: Modifica el valor de e (deslizando el punto verde) y observa los cambios.
Pulsa el botón Actualizar para recuperar la imagen inicial. Modifica el valor de a y observa los cambios.
|
Ecuaciones de la elipse
Ecuación reducida de la elipse
Ecuación reducida de la elipse
- La ecuación de una elipse con semieje mayor y semieje menor , con centro en el origen de coordenadas y focos en el eje de abscisas es:
|
Sean y los focos de la elipse. Cualquier punto P(x,y) de la misma cumple:
Sustituyendo las distancias por su fórmula matemática:
Pasamos la segunda raíz al segundo miembro:
Se elevan al cuadrado ambos miebros y se simplifica:
Se elevan al cuadrado los dos miembros:
Reordenando y agrupando términos:
Teniendo en cuenta que :
Dividiendo la expresión por :
se obtiene la cuación buscada:
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación reducida de la elipse de semiejes 5 y 9.
Actividad: La ecuación reducida viene dada por la fórmula: Sustituyendo a=5 y b=3, tenemos: Puedes ver su gráfica en la siguente escena: Ejercicio:
|
Ecuación de la elipse con los focos en el eje Y
Ecuación de la elipse con los focos en el eje Y
- La ecuación de una elipse con semieje mayor y semieje menor , con centro en el origen de coordenadas y focos en el eje de ordenadas es:
|
- Su excentricidad es:
Ecuación de la elipse con el centro desplazado del origen de coordenadas
Ecuación de la elipse con el centro desplazado del origen
- La ecuación de una elipse con semiejes y y centro es:
|
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación de la elipse de centro O(3,-1) y semiejes 5 y 2.
Actividad: La ecuación reducida viene dada por la fórmula: Sustituyendo , , , , tenemos: Puedes ver su gráfica en la siguente escena: Ejercicio:
|
Construcciones de la elipse
Actividad interactiva: Construcciones de la elipse
Actividad 1: Método del jardinero.
Actividad: Los jardineros, para trazar una forma elíptica sobre la tierra, clavan dos estacas en el suelo, atan entre ambas una cuerda suficientemente amplia y, manteniéndola tensa, trazan una línea sobre la tierra apoyando un palo sobre la cuerda y deslizándolo sobre la misma. En la siguiente escena, activa la traza, desliza el punto P y observa.
Actividad 2: La elipse como envolvente (1).
Actividad: Desliza el punto Q y observa.
Activa el trazo de QR y vuelve a deslizar el punto Q
Tras pulsar sobre para volver a la figura inicial, modifica la posición de F y repite lo anterior.
Actividad 3: La elipse como envolvente (2).
Actividad: Desliza el punto Q y observa. La figura muestra por donde habría de doblarse la cicunferencia (si fuese de papel) para que el punto Q coincidiese con el F. Activa el trazo de la cuerda y vuelve a deslizar el punto Q
Tras pulsar sobre para volver a la figura inicial, modifica la posición de F y repite lo anterior.
Actividad 4: La elipse a partir de dos circunferencias.
Actividad: Desliza el punto Q y observa.
Actividad 5: La elipse como hipotrocoide.
Actividad 6: La elipse mediante el compás de Arquímedes.
Actividad: Al utilizar el deslizador comprobarás el movimiento de un segmento de longitud fija cuyos extremos se deslizan sobre dos ejes perpendiculares.
Actividad 7: La elipse a partir de dos circunferencias tangentes interiores.
Actividad: Desliza el punto Q y observa. Activa el trazo del centro de la circunferencia interior y vuelve a deslizar el punto Q. |