La hipérbola (1ºBach)
De Wikipedia
Revisión de 19:24 31 mar 2009 Coordinador (Discusión | contribuciones) (→Construcciones de la elipse) ← Ir a diferencia anterior |
Revisión de 19:28 31 mar 2009 Coordinador (Discusión | contribuciones) (→Construcciones de la hipérbola) Ir a siguiente diferencia → |
||
Línea 226: | Línea 226: | ||
}} | }} | ||
{{ai_cuerpo | {{ai_cuerpo | ||
- | |enunciado='''Actividad 2:''' La elipse como envolvente (1). | + | |enunciado='''Actividad 2:''' La hipérbola como envolvente (1). |
|actividad= | |actividad= | ||
<center><iframe> | <center><iframe> | ||
- | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_6.html | + | url=http://maralboran.org/web_ma/geogebra/figuras/hiperbola_2.html |
width=780 | width=780 | ||
height=460 | height=460 | ||
name=myframe | name=myframe | ||
</iframe></center> | </iframe></center> | ||
- | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_6.html '''Click''' aquí si no se ve bien la escena]</center> | + | <center>[http://maralboran.org/web_ma/geogebra/figuras/hiperbola_2.html '''Click''' aquí si no se ve bien la escena]</center> |
- | Desliza el punto Q y observa. | + | Desliza el punto Q y observa los cambios. |
- | *¿Qué cumple el segmento QR en cada momento respecto al punto F? | + | |
- | Activa el trazo de QR y vuelve a deslizar el punto Q | + | |
- | *¿Cuál es la envolvente de la familia de segmentos QR?, es decir, ¿cuál es la curva tangente a esa familia de segmentos? | + | |
- | Tras pulsar sobre para volver a la figura inicial, modifica la posición de F y repite lo anterior. | + | |
- | *¿De qué modo influye la posición relativa de F en la forma de la elipse generada? | + | |
- | }} | + | Activa el trazo de la recta y vuelve a deslizar Q |
- | {{ai_cuerpo | + | |
- | |enunciado='''Actividad 3:''' La elipse como envolvente (2). | + | |
- | |actividad= | + | |
- | <center><iframe> | + | *Aparece una hipérbola como la envolvente ¿de qué familia de rectas? |
- | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_7.html | + | |
- | width=780 | + | |
- | height=460 | + | |
- | name=myframe | + | |
- | </iframe></center> | + | |
- | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_7.html '''Click''' aquí si no se ve bien la escena]</center> | + | |
- | + | ||
- | Desliza el punto Q y observa. La figura muestra por donde habría de doblarse la cicunferencia (si fuese de papel) para que el punto Q coincidiese con el F. | + | |
- | + | ||
- | Activa el trazo de la cuerda y vuelve a deslizar el punto Q | + | |
- | *¿Cuál es la envolvente de la familia de esas cuerdas?, es decir, ¿cuál es la curva tangente a esa familia de segmentos? | + | |
Tras pulsar sobre para volver a la figura inicial, modifica la posición de F y repite lo anterior. | Tras pulsar sobre para volver a la figura inicial, modifica la posición de F y repite lo anterior. | ||
- | *¿De qué modo influye la posición relativa de F en la forma de la elipse generada? | ||
- | }} | + | *¿De qué modo influye la posición relativa de F en la forma de la cónica generada? |
- | {{ai_cuerpo | + | |
- | |enunciado='''Actividad 4:''' La elipse a partir de dos circunferencias. | + | |
- | |actividad= | + | |
- | + | ||
- | <center><iframe> | + | |
- | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_8.html | + | |
- | width=780 | + | |
- | height=460 | + | |
- | name=myframe | + | |
- | </iframe></center> | + | |
- | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_8.html '''Click''' aquí si no se ve bien la escena]</center> | + | |
- | + | ||
- | Desliza el punto Q y observa. | + | |
- | + | ||
- | *¿Cómo está determinado el punto P? | + | |
- | + | ||
- | Activa su trazo y vuelve a deslizar el punto Q. | + | |
}} | }} | ||
- | {{ai_cuerpo | ||
- | |enunciado='''Actividad 5:''' La elipse como hipotrocoide. | ||
- | |actividad= | ||
- | <center><iframe> | ||
- | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_9.html | ||
- | width=780 | ||
- | height=460 | ||
- | name=myframe | ||
- | </iframe></center> | ||
- | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_9.html '''Click''' aquí si no se ve bien la escena]</center> | ||
- | |||
- | Desliza el punto verde y observa. | ||
- | |||
- | }} | ||
- | {{ai_cuerpo | ||
- | |enunciado='''Actividad 6:''' La elipse mediante el compás de [[Arquímedes]]. | ||
- | |actividad= | ||
- | |||
- | <center><iframe> | ||
- | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_10.html | ||
- | width=780 | ||
- | height=460 | ||
- | name=myframe | ||
- | </iframe></center> | ||
- | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_10.html '''Click''' aquí si no se ve bien la escena]</center> | ||
- | |||
- | Al utilizar el deslizador comprobarás el movimiento de un segmento de longitud fija cuyos extremos se deslizan sobre dos ejes perpendiculares. | ||
- | |||
- | *¿Qué trayectoria describirá un punto determinado de ese segmento? | ||
- | |||
- | Activa el trazo de P para comprobarlo. | ||
- | |||
- | }} | ||
- | {{ai_cuerpo | ||
- | |enunciado='''Actividad 7:''' La elipse a partir de dos circunferencias tangentes interiores. | ||
- | |actividad= | ||
- | |||
- | <center><iframe> | ||
- | url=http://maralboran.org/web_ma/geogebra/figuras/elipse_11.html | ||
- | width=780 | ||
- | height=460 | ||
- | name=myframe | ||
- | </iframe></center> | ||
- | <center>[http://maralboran.org/web_ma/geogebra/figuras/elipse_11.html '''Click''' aquí si no se ve bien la escena]</center> | ||
- | |||
- | Desliza el punto Q y observa. | ||
- | |||
- | Activa el trazo del centro de la circunferencia interior y vuelve a deslizar el punto Q. | ||
- | |||
- | }} | ||
}} | }} | ||
{{p}} | {{p}} | ||
[[Categoría: Matemáticas]][[Categoría: Geometría]] | [[Categoría: Matemáticas]][[Categoría: Geometría]] |
Revisión de 19:28 31 mar 2009
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Elementos de la hipérbola
Excentricidad de la hipérbola
La excentricidad es un parámetro que determina el grado de desviación de una sección cónica con respecto a una circunferencia.
La excentricidad de la hipérbola es el cociente entre la distancia focal y el eje:
Propiedades
- En una hipérbola .
- Como la hipotenusa del triángulo rectángulo es mayor que los catetos, tenemos que
Actividad interactiva: Excentricidad de la hipérbola
Actividad 1: En la siguiente escena vamos a ver como se ve afectada la hipérbola si modificamos su excentricidad.
Actividad: Ejercicios: Modifica el valor de e (deslizando el punto verde) y observa los cambios.
Pulsa el botón Actualizar para recuperar la imagen inicial. Modifica el valor de a y observa los cambios.
|
Ecuaciones de la elipse
Ecuación reducida de la elipse
Ecuación reducida de la elipse
- La ecuación de una elipse con semieje mayor y semieje menor , con centro en el origen de coordenadas y focos en el eje de abscisas es:
|
Sean y los focos de la elipse. Cualquier punto P(x,y) de la misma cumple:
Sustituyendo las distancias por su fórmula matemática:
Pasamos la segunda raíz al segundo miembro:
Se elevan al cuadrado ambos miebros y se simplifica:
Se elevan al cuadrado los dos miembros:
Reordenando y agrupando términos:
Teniendo en cuenta que :
Dividiendo la expresión por :
se obtiene la cuación buscada:
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación reducida de la elipse de semiejes 5 y 9.
Actividad: La ecuación reducida viene dada por la fórmula: Sustituyendo a=5 y b=3, tenemos: Puedes ver su gráfica en la siguente escena: Ejercicio:
|
Ecuación de la elipse con los focos en el eje Y
Ecuación de la elipse con los focos en el eje Y
- La ecuación de una elipse con semieje mayor y semieje menor , con centro en el origen de coordenadas y focos en el eje de ordenadas es:
|
- Su excentricidad es:
Ecuación de la elipse con el centro desplazado del origen de coordenadas
Ecuación de la elipse con el centro desplazado del origen
- La ecuación de una elipse con semiejes y y centro es:
|
Actividad interactiva: Ecuación reducida de la elipse
Actividad 1: En la siguiente escena vamos a calcular la ecuación de la elipse de centro O(3,-1) y semiejes 5 y 2.
Actividad: La ecuación reducida viene dada por la fórmula: Sustituyendo , , , , tenemos: Puedes ver su gráfica en la siguente escena: Ejercicio:
|
Construcciones de la hipérbola
Actividad interactiva: Construcciones de la elipse
Actividad 1: Usando la definición de hipérbola como lugar geométrico.
Actividad: En la siguiente escena, activa la traza, desliza el punto P y observa.
Actividad 2: La hipérbola como envolvente (1).
Actividad: Desliza el punto Q y observa los cambios. Activa el trazo de la recta y vuelve a deslizar Q
Tras pulsar sobre para volver a la figura inicial, modifica la posición de F y repite lo anterior.
|