Razones trigonométricas de ángulos cualesquiera (1ºBach)
De Wikipedia
| Revisión de 12:06 28 sep 2014 Coordinador (Discusión | contribuciones) (→Razones trigonométricas de algunos ángulos importantes) ← Ir a diferencia anterior |
Revisión de 18:06 28 sep 2014 Coordinador (Discusión | contribuciones) (→Video) Ir a siguiente diferencia → |
||
| Línea 67: | Línea 67: | ||
| - | ==Video== | + | ==Videotutoriales== |
| - | {{Video_enlace2 | + | {{Video_enlace |
| - | |titulo1=Círculo Goniométrico | + | |titulo1= Razones trigonométricas de ángulos orientados |
| - | |duracion=12'55" | + | |duracion=11´ |
| - | |sinopsis= | + | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/03-razones-trigonometricas-de-angulos-orientados#.VChNihZ8HA8 |
| - | *Razones trigonométricas de un ángulo. Fórmula fundamental. | + | |sinopsis=Videotutorial. |
| - | *Circúlo goniométrico. | + | |
| - | *Interpretación geométrica de las razones trigonométricas. | + | |
| - | *Medida en grados y radianes. | + | |
| - | *Tablas de las razones trigonométricas de los ángulos principales. | + | |
| - | *Signo de las razones trigonométricas segun el cuadrante del ángulo. | + | |
| - | |url1=http://www.matematicasbachiller.com/videos/cdiferencial/df_t_01/vdf0119.htm | + | |
| }} | }} | ||
| + | {{p}} | ||
| + | {{Video_enlace | ||
| + | |titulo1= 3 ejercicios | ||
| + | |duracion=5´53" | ||
| + | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/0301-tres-ejercicios-3#.VChN-BZ8HA8 | ||
| + | |sinopsis=Videotutorial. | ||
| + | }} | ||
| + | {{p}} | ||
| + | {{Video_enlace | ||
| + | |titulo1=El círculo goniométrico | ||
| + | |duracion=11´ | ||
| + | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/04-el-circulo-goniometrico#.VChMthZ8HA8 | ||
| + | |sinopsis=Videotutorial. | ||
| + | }} | ||
| + | {{p}} | ||
| [[Categoría: Matemáticas]][[Categoría: Geometría]] | [[Categoría: Matemáticas]][[Categoría: Geometría]] | ||
Revisión de 18:06 28 sep 2014
| Enlaces internos | Para repasar o ampliar | Enlaces externos |
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Circunferencia goniométrica
Vamos a establecer un sistema de referencia para el estudio de los ángulos de cualquier cuadrante.
Consideremos una circunferencia de radio 1 centrada en un sistema de referencia cartesiano, es decir, con su centro en el origen de coordenadas O. Sobre ella situaremos nuestro triángulo rectángulo ABC, haciendo coincidir su vértice A con O, el cateto contiguo al ángulo
lo situaremos en el eje X positivo y la hipotenusa coincidiendo con el radio, tal y como se muestra en la figura. A esta circunferencia la llamaremos circunferencia goniométrica.
Teniendo en cuenta que , las razones trigonométricas del águlo se expresan de la siguiente manera:
|
Razones trigonométricas de un ángulo cualquiera
Obsérvese como las coordenadas del punto B son
. Y por extensión, podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:
Dado un ángulo
, se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte del segundo lado del ángulo con la circunferencia goniométrica:

Signo de las razones trigonométricas
Según en qué cuadrante estemos, el segmento OC que determina al coseno, puede estar situado a la derecha o a la izquierda del origen O. Así, asignaremos signo positivo al coseno si está a la derecha de O y negativo si está a la izquierda.
Analogamente, el segmento CB que determina al seno, puede estar situado por encima o por debajo del eje X . Asignaremos signo positivo al seno si está por encima y negativo si está por debajo.
Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:
Relaciones fundamentales de la trigonometría (ángulos de cualquier cuadrante)
Las relaciones fundamentales de la trigonometría, ya estudiadas anteriormente, siguen siendo válidas con las definiciones dadas para ángulos de cualquier cuadrante.
|
Actividad interactiva: Relaciones fundamentales de la trigonometría
Actividad 1: Practica con las relaciones fundamentales de la trigonometría y ponte a prueba con una autoevaluación. En estas actividades tendrás que tener en cuenta en qué cuadrante está el ángulo para determinar el signo de la razón trigonométrica.
Actividad:
|
Videotutoriales
Videotutorial.
Videotutorial.
Videotutorial.


