Límite de una sucesión (1ºBach)
De Wikipedia
Revisión de 17:09 3 sep 2016 Coordinador (Discusión | contribuciones) (→Representación gráfica de una sucesión) ← Ir a diferencia anterior |
Revisión de 17:15 3 sep 2016 Coordinador (Discusión | contribuciones) (→Representación gráfica de una sucesión) Ir a siguiente diferencia → |
||
Línea 55: | Línea 55: | ||
<center><math>lim \ a_n = lim \ \cfrac{5n}{n+3} = 5</math></center> | <center><math>lim \ a_n = lim \ \cfrac{5n}{n+3} = 5</math></center> | ||
+ | |||
|celda2= | |celda2= | ||
[[Imagen:sucesion.png|350px|right]] | [[Imagen:sucesion.png|350px|right]] | ||
+ | }} | ||
+ | {{Geogebra_enlace | ||
+ | |descripcion=En esta escena de Geogebra podrás ver como se representa gráficamente la sucesión <math>a_n=\cfrac{5n}{n+3}</math>. | ||
+ | |enlace=[https://www.geogebra.org/m/XHE8XRmk Ver la representación del aptdo. a) con Geogebra] | ||
}} | }} | ||
{{Tabla75 | {{Tabla75 | ||
Línea 101: | Línea 106: | ||
Observa que, en ambos ejemplos, los valores obtenidos cuando n es pequeño, no son representativos del valor del límite. Por tanto, el valor del límite debe deducirse tomando valores de n suficientemente grandes. | Observa que, en ambos ejemplos, los valores obtenidos cuando n es pequeño, no son representativos del valor del límite. Por tanto, el valor del límite debe deducirse tomando valores de n suficientemente grandes. | ||
{{p}} | {{p}} | ||
- | {{Geogebra_enlace | + | |
- | |descripcion=En esta escena de Geogebra podrás ver como se representa gráficamente la sucesión <math>a_n=\cfrac{5n}{n+3}</math>. | + | |
- | |enlace=[https://www.geogebra.org/m/XHE8XRmk Representación gráfica y límite de una sucesión] | + | |
- | }} | + | |
===Ejercicios=== | ===Ejercicios=== | ||
Revisión de 17:15 3 sep 2016
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Para acercarnos a la idea de límite, vamos a empezar viendo algunas representaciones gráficas de sucesiones
Representación gráfica de una sucesión
(pág. 61)
Para representar gráficamente una sucesión , construiremos una tabla donde anotaremos el valor de para distintos valores de n.
Las parejas obtenidas en la tabla, son las coordenadas de los puntos de la representación gráfica de la sucesión, que dibujaremos en unos ejes de coordenadas cartesianos.
Ejercicios resueltos: Representación gráfica y límite de una sucesión
- Representa graficamente las siguientes sucesiones:
- a)
- b)
a)
Construimos la tabla de valores:
Se observa que los términos de la sucesión se acercan cada vez mas a 5. Concluiremos diciendo que el límite de esta sucesión es 0, y lo escribiremos simbólicamente de la siguiente manera: |
En esta escena de Geogebra podrás ver como se representa gráficamente la sucesión .
b)
Construimos la tabla de valores:
Se observa que los términos crecen y se hacen indefinidamente grandes. Concluiremos diciendo que el límite de esta sucesión es , y lo escribiremos simbólicamente de la siguiente manera: |
Observa que, en ambos ejemplos, los valores obtenidos cuando n es pequeño, no son representativos del valor del límite. Por tanto, el valor del límite debe deducirse tomando valores de n suficientemente grandes.
Ejercicios
Actividad: Representación gráfica y límite de una sucesión 1. Dada la sucesión
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: 1.
2.
|
(pág. 61)
Ejercicios propuestos: Representación gráfica y límite de una sucesión |
Concepto de límite de una sucesión
(pág. 62)
- Cuando los términos de una sucesión podemos conseguir que se aproximen a un número , tanto como queramos (a menos de una distancia tan pequeña como deseemos) al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a o que su límite es . Diremos que la sucesión es convergente. Lo escribiremos simbólicamente:
- Cuando los términos de una sucesión superan a cualquier número "k" tan grande como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a o que su límite es . Diremos que la sucesión es divergente. Lo escribiremos simbólicamente:
- Cuando los términos de una sucesión toman valores inferiores a cualquier número "k" negativo tan pequeño como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a o que su límite es . Diremos que la sucesión es divergente. Lo escribiremos simbólicamente:
Teorema
- Toda sucesión de números reales monótona y acotada es convergente. Mas concretamente:
- Una sucesión de números reales creciente y acotada superiormente es convergente.
- Una sucesión de números reales decreciente y acotada inferiormente es convergente.
La demostración excede el nivel de este curso
Sucesiones que no tienen límite
(pág. 63)
Hay sucesiones que no cumplen ninguna de las tres condiciones expuestas en el apartado anterior. Dichas sucesiones diremos que no tienen límite.
Ejemplo: Sucesión oscilante
- La siguiente sucesión no tiene límite
En efecto, los términos de esta sucesión son:
Esto es debido a que sus términos se aproximan a dos valores distintos: los términos impares tienden a y los pares a , como puede verse en la representación gráfica de la sucesión. |
Ejercicios
Ejercicios resueltos: Límite de una sucesión
- 1. Estudiar el comportamiento de las siguientes sucesiones para valores de n avanzados e indicar su límite:
- a)
- b)
- 2. Comprobar si las siguientes sucesiones tienen límite:
- a)
- b)
Utilizaremos Wolfram para comprobarlos:
- 1a.
- Table[3+10/n,{n,1.,10.}] o Table[3+10/n,{n,1.,1000.,100}]
- Plot Table[3+10/n,{n,1.,1000.,100}]
- limit 3+10/n as n->+oo
- 1b.
- Table[(n^2-n)/2,{n,1.,10.}] o Table[(n^2-n)/2,{n,1.,1000.,100}]
- Plot Table[(n^2-n)/2,{n,1.,1000.,100}]
- limit (n^2-n)/2 as n->+oo
- 2a.
- Table[(-3)^n,{n,1.,10.}] o Table[(-3)^n,{n,1.,1000.,100}]
- Plot Table[(-3)^n,{n,1.,1000.,100}]
- limit (-3)^n as n->+oo
- 2b.
- Table[(-1)^n/n,{n,1.,10.}] o Table[(-1)^n/n,{n,1.,1000.,100}]
- Plot Table[(-1)^n/n,{n,1.,1000.,100}]
- limit (-1)^n/n as n->+oo
(pág. 63)
Ejercicios propuestos: Límite de una sucesión |
Ejercicios
Ejercicio: Límite de una sucesión
Solución: Límites:
Representación gráfica: En la siguiente escena tienes la representación gráfica de las sucesiones. Pulsa los cursores "sucesión" para cambiar de sucesión. Haz uso del zoom y del cambio de escala O.x y O.y para visualizar mejor los resultados. Mueve el punto amarillo para ver la sucesión término a término. |
Videotutoriales (Ampliación)
- Concepto de sucesión de números reales. Ejemplos.
- Introducción de la notación necesaria para el comprender el concepto de límite de una sucesión de números reales.
- Representación gráfica de una sucesión de números reales.
- Definición rigurosa de límite finito de una sucesión de números reales. (sucesión convergente)
- Ejemplos.
- Visualización del concepto de límite.
- Demostrar que usando la definición rigurosa de límite.
- Definición rigurosa de límite infinito (sucesión divergente)
- Ejemplos.
- Visualización del concepto de límite infinito.
- Propiedades aritméticas de los límites (límite de una suma, de un producto, de un cociente, de una potencia, etc.)
- Ejemplos.
- Indeterminaciones matemáticas.
- Las diversas indeterminaciones matemáticas.
- Definición de infinito potencial de grado k.
- Ejemplos.
- Cociente de infinitos potenciales.
- Ejemplos.
- Definición de infinito de orden superior, inferior o igual a otro infinito.
- Ejemplos.