Plantilla:Divisibilidad de polinomios
De Wikipedia
(Diferencia entre revisiones)
Revisión de 16:44 9 sep 2016 Coordinador (Discusión | contribuciones) (→Polinomios múltiplos y divisores) ← Ir a diferencia anterior |
Revisión de 16:48 9 sep 2016 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 2: | Línea 2: | ||
{{Caja_Amarilla|texto=Un polinomio <math>Q(x)\,</math> es '''divisor''' de otro, <math>P(x)\,</math> y lo representaremos por <math>Q(x)|P(x)\;</math>, si la división <math>P(x):\,Q(x)\,</math> es exacta, es decir, cuando existe otro polinomio <math>C(x)\;</math> tal que: | {{Caja_Amarilla|texto=Un polinomio <math>Q(x)\,</math> es '''divisor''' de otro, <math>P(x)\,</math> y lo representaremos por <math>Q(x)|P(x)\;</math>, si la división <math>P(x):\,Q(x)\,</math> es exacta, es decir, cuando existe otro polinomio <math>C(x)\;</math> tal que: | ||
- | <br> | + | {{p}} |
{{Caja|contenido=<math>P(x)=\,Q(x)\cdot C(x)\,</math>}} | {{Caja|contenido=<math>P(x)=\,Q(x)\cdot C(x)\,</math>}} | ||
- | {{b4}} | + | {{p}} |
También diremos que <math>P(x)\,</math> es '''divisible''' por <math>Q(x)\,</math> o que <math>P(x)\,</math> es un '''múltiplo''' de <math>Q(x)\,</math>. | También diremos que <math>P(x)\,</math> es '''divisible''' por <math>Q(x)\,</math> o que <math>P(x)\,</math> es un '''múltiplo''' de <math>Q(x)\,</math>. | ||
}} | }} |
Revisión de 16:48 9 sep 2016
Polinomios múltiplos y divisores
Un polinomio es divisor de otro,
y lo representaremos por
, si la división
es exacta, es decir, cuando existe otro polinomio
tal que:
|
También diremos que es divisible por
o que
es un múltiplo de
.
Dados los polinomios:

Se cumple que


Es decir, la siguiente división es exacta:

porque:

La divisibilidad de polinomios es semejante a la divisibilidad con números enteros. Asimismo, la factorización de polinomios equivale a la descomposición de un número en factores primos, y los conceptos de máximo común divisor, mínimo común múltiplo e irreducibilidad son similares a los correspondientes conceptos numéricos.
Polinomios irreducibles
Un polinomio es irreducible cuando ningún polinomio de grado inferior es divisor suyo.