Plantilla:Progresiones geométricas
De Wikipedia
Revisión de 10:36 14 sep 2016 Coordinador (Discusión | contribuciones) (→Progresiones geométricas) ← Ir a diferencia anterior |
Revisión de 12:28 14 sep 2016 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 1: | Línea 1: | ||
- | {{Caja_Amarilla|texto= | + | {{def progresion geometrica}} |
- | Una '''progresión geométrica''' es una sucesión de números en la que cada término se obtiene multiplicando el anterior por una cantidad fija, <math>r\;\!</math>, que llamaremos '''razón''' | + | |
- | }} | + | |
{{p}} | {{p}} | ||
- | Por ejemplo: | ||
- | <center>[[Imagen:prog_geometrica.png]]</center> | ||
- | |||
- | es una progresión geométrica de razón r=2. | ||
- | |||
===Término general de una progresión geométrica=== | ===Término general de una progresión geométrica=== | ||
{{Teorema | {{Teorema |
Revisión de 12:28 14 sep 2016
Una progresión geométrica es una sucesión de números en la que cada término se obtiene multiplicando el anterior por una cantidad fija, , que llamaremos razón.
Escrito en forma recursiva:

Por ejemplo, la sucesión :
es una progresión geométrica de razón .

Progresiones geométricas: definición y ejemplos.

Halla el quinto término de la siguiente progresión geométrica:

Halla el término de una progresión aritmética que viene dada por la siguiente ley de recurrencia:
Actividades en las que aprenderás el concepto de progresión geométrica y a cómo identificarlas.

Extiende sucesiones geométricas.

Extiende sucesiones geométricas con términos negativos y racionales.

Fórmulas recursivas para sucesiones geométricas.
Término general de una progresión geométrica
Término general de una progresión geométrica
- Sean
términos de una progresión geométrica de razón
.
- Entonces se cumple que:
|
En efecto, de forma intuitiva:

........................
Demostración por el método de inducción completa:
Para ello hay que comprobar primero que la fórmula se cumple para n=1. A continuación, suponiendo que la fórmula es cierta para el valor n, deberemos comprobar que también se cumple para el valor n+1. Con ésto, la fórmula será cierta para todo valor n natural.
Veamos que se cumple para n=1. Sustituimos n por 1 en el lado derecho de la fórmula:

con lo que queda comprobada para n=1.
Supongamos que la fórmula es cierta para el valor n:

Por ser una progresión geométrica cada término se obtiene multiplicando por r el anterior término:

Debemos comprobar que se cumple para el valor n+1:
![a_{n+1}\begin{matrix} ~_{[2]}~ \\ = \\ ~ \end{matrix}a_n \cdot r \begin{matrix} ~_{[1]}~ \\ = \\ ~ \end{matrix} a_1 \cdot r^{n-1} \cdot r =a_1 \cdot r^{((n+1)-1)}](/wikipedia/images/math/b/5/0/b50e2fb51571873946095ab7579f8b90.png)

- Definición de progresión geométrica.
- Ejemplos.
- Término general de una progresión geométrica.
Suma de términos de una progresión geométrica
Suma de términos de una progresión geométrica
- La suma de los n primeros términos de una progresión geométrica es:
|
Efectuamos la siguiente resta:
- ______________________________________________________________________________
por tanto:

y despejando


Ejemplos y demostración la fórmula de la suma de n términos consecutivos de una progresión geométrica
Suma de los infinitos términos de una progresión geométrica
- La suma de todos los términos de una progresión geométrica en la que su razón verifica que
se obtiene así:
|
Para la demostración se requiere del concepto de límite. Véase: Algunos límites importantes.
Producto de términos de una progresión geométrica
Producto de n términos de una progresión geométrica
- El producto de los n primeros términos de una progresión geométrica es:
|
Véase en el siguiente videotutorial:

Demostración de la fórmula del producto de n términos de una progresión geométrica