Razones trigonométricas de un ángulo agudo (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 19:28 15 sep 2016
Coordinador (Discusión | contribuciones)
(Calculadora)
← Ir a diferencia anterior
Revisión de 15:33 17 sep 2016
Coordinador (Discusión | contribuciones)
(Razones trigonométricas de algunos ángulos importantes)
Ir a siguiente diferencia →
Línea 200: Línea 200:
|duracion=4´54" |duracion=4´54"
|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/05-angulos-agudos/04-razones-trigonometricas-de-angulos-complementarios#.VCfDrPl_u2E |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/05-angulos-agudos/04-razones-trigonometricas-de-angulos-complementarios#.VCfDrPl_u2E
-|sinopsis=Videotutorial +|sinopsis=*Dos ángulos agudos se dicen complementarios si suman 90º.
 +*El seno de un ángulo agudo coincide con el coseno de su complementario.
 +*La tangente de un ángulo agudo coincide con la cotangente de su complementario.
 +*La secante de un ángulo agudo coincide con la cesecante de su complementario.
 + 
}} }}
{{p}} {{p}}
Línea 207: Línea 211:
|duracion=6´59" |duracion=6´59"
|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/05-angulos-agudos/05-razones-trigonometricas-de-los-angulos-mas-famosos#.VCfETfl_u2E |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/05-angulos-agudos/05-razones-trigonometricas-de-los-angulos-mas-famosos#.VCfETfl_u2E
-|sinopsis=Videotutorial +|sinopsis=*Apoyándonos en un triángulo equilátero de lado unidad, en este vídeo determinamos las razones trigonométricas de los ángulos de 30º y 60º.
 +*También determinamos las razones trigonométricas del ángulo de 45º; para ello nos servimos de un triángulo rectángulo de catetos unitarios.
 +*Las razones trigonométricas en cuestión deben memorizarse.
 + 
}} }}
{{p}} {{p}}

Revisión de 15:33 17 sep 2016

Tabla de contenidos

(Pág. 106)

Razones trigonométricas de un ángulo agudo

Dado un triángulo rectángulo ABC, se definen las razones trigonométricas del ángulo agudo \alpha \,, de la siguiente manera:

  • El seno (abreviado como sen, o sin por llamarse "sinus" en latín) es la razón entre el cateto opuesto y la hipotenusa:

sen \, \alpha= \frac{a}{c} = \frac{\overline{CB}}{\overline{AB}}
  • El coseno (abreviado como cos) es la razón entre el cateto adyacente (o contiguo) y la hipotenusa:

cos \, \alpha= \frac{b}{c} = \frac{\overline{AC}}{\overline{AB}}
  • La tangente (abreviado como tan o tg) es la razón entre el cateto opuesto y el cateto adyacente:

tg \, \alpha= \frac{a}{b} = \frac{\overline{CB}}{\overline{AC}}

Razones trigonométricas inversas

Las razones trigonométricas inversas se definen de la siguiente manera:

  • La cosecante (abreviado como csc o cosec), razón inversa del seno:

cosec \, \alpha= \frac{1}{sen \, \alpha} = \frac{c}{a}
  • La secante (abreviado como sec), razón inversa del coseno:

sec \, \alpha= \frac{1}{cos \, \alpha} = \frac{c}{b}
  • La cotangente (abreviado como cot), razón inversa de la tangente:

cot \, \alpha= \frac{1}{tg \, \alpha} = \frac{b}{a}

Relaciones fundamentales de la trigonometría

ejercicio

Relaciones fundamentales de la trigonometría


1. sen^2 \, \alpha + cos^2 \, \alpha = 1

2. tg \, \alpha =\cfrac{sen \, \alpha }{cos \, \alpha}

3. 1+tg^2 \, \alpha =\cfrac{1}{cos^2 \, \alpha}

ejercicio

Ejercicio resuelto: Razones trigonométricas de un ángulo agudo


1. Conociendo cos \, \alpha = 0.86, calcular sen \, \alpha  y  tg \, \alpha.

2. Conociendo tg \, \alpha = 2.83, calcular sen \, \alpha  y  cos \, \alpha.

Razones trigonométricas de algunos ángulos importantes

A continuación las razones trigonométricas de algunos ángulos que es conveniente recordar:

Grados sen cos tg cosec sec cot
30^o \, \frac{1}{2} \frac{\sqrt{3}}{2} \frac{\sqrt{3}}{3} 2 \, \frac{2\sqrt{3}}{3} \sqrt{3}
45^o \, \frac{\sqrt{2}}{2} \frac{\sqrt{2}}{2} 1 \, \sqrt{2} \sqrt{2} 1 \,
60^o \, \frac{\sqrt{3}}{2} \frac{1}{2} \sqrt{3} \frac{2\sqrt{3}}{3} 2 \, \frac{\sqrt{3}}{3}

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda