Razones trigonométricas de ángulos cualesquiera (1ºBach)
De Wikipedia
Revisión de 16:12 17 sep 2016 Coordinador (Discusión | contribuciones) (→Signo de las razones trigonométricas) ← Ir a diferencia anterior |
Revisión de 16:18 17 sep 2016 Coordinador (Discusión | contribuciones) (→Signo de las razones trigonométricas) Ir a siguiente diferencia → |
||
Línea 113: | Línea 113: | ||
|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/0301-tres-ejercicios-3#.VChN-BZ8HA8 | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/0301-tres-ejercicios-3#.VChN-BZ8HA8 | ||
|sinopsis=3 ejercicios sobre razones trigonométricas de ángulos orientados. | |sinopsis=3 ejercicios sobre razones trigonométricas de ángulos orientados. | ||
- | }} | ||
- | {{p}} | ||
- | {{Video_enlace | ||
- | |titulo1= Determinación del ángulo conocida una de sus razones trigonométricas | ||
- | |duracion=7´38" | ||
- | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/05-determinacion-del-angulo-conocida-una-de-sus-razones-trigonometricas#.VChRtfl_vwo | ||
- | |sinopsis=Si -1 < a < 1, en el primer giro hay dos ángulos cuyo seno es "a". | ||
- | Si -1 < b < 1, en el primer giro hay dos ángulos cuyo coseno es "b". | ||
- | Si "c" es un número real, en el primer giro hay dos ángulos cuyo tangente es "c". | ||
- | |||
- | }} | ||
- | {{p}} | ||
- | {{Video_enlace | ||
- | |titulo1= 2 ejercicios | ||
- | |duracion=5´48" | ||
- | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/06-angulos-orientados/0501-dos-ejercicios#.VChRxvl_vwo | ||
- | |sinopsis=En este vídeo empleamos la calculadora científica para determinar los dos ángulos del primer giro cuyo seno es 0.3 y los dos ángulos del primer giro cuyo seno es -0.4. | ||
- | |||
}} | }} | ||
Revisión de 16:18 17 sep 2016
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 107)
Angulos orientados
Un ángulo orientado es aquel que, en un sistema de coordenadas cartesianas, está generado por el giro de una semirecta que parte del semieje positivo de las X. (Fig. 1)
Los ejes cartesianos dividen al plano en cuatro regiones denominadas cuadrantes:
|
Un ángulo se dice "orientado" si uno de sus lados se bautiza "lado origen" y el otro lado se bautiza "lado extremo". Si para hacer coincidir el lado origen con el lado extremo se gira alrededor del vértice en sentido contrario a las agujas del reloj, el ángulo se dice "positivo" o "levógiro", diciéndose "negativo" o "dextrógiro" si se gira en el sentido a las agujas del reloj.
Circunferencia goniométrica
Llamaremos circunferencia goniométrica a la circunferencia de radio 1 centrada en un sistema de referencia cartesiano, es decir, con centro en el origen de coordenadas, O.
Sobre la circunferencia goniométrica situaremos nuestro ángulo orientado, . Este genera un triángulo rectángulo ABC, tal y como se muestra en la Fig. 2. En él, el vértice A coincide con el origen O, el cateto contiguo al ángulo se situa en el eje X positivo y la hipotenusa coincide con el radio.
Teniendo en cuenta que , las razones trigonométricas del águlo se expresan de la siguiente manera:
|
Empleando un circulo de radio unidad pueden "visualizarse" las razones trigonométricas de un ángulo orientado.
Razones trigonométricas de un ángulo cualquiera
Obsérvese como las coordenadas del punto B, del apartado anterior, son . Así podemos dar la siguiente definición del seno y del coseno de un ángulo de cualquier cuadrante:
- Dado un ángulo , se define el coseno y el seno de dicho ángulo, como las coordenadas del punto de corte, B, del lado terminal del ángulo con la circunferencia goniométrica:
- Definiremos la tangente del ángulo, como:
Signo de las razones trigonométricas
Según en qué cuadrante esté el ángulo, el segmento OC que determina al coseno, puede estar situado a la derecha o a la izquierda del origen O. Así, el signo del coseno será positivo si está a la derecha de O y negativo si está a la izquierda.
Analogamente, el segmento CB que determina al seno, puede estar situado por encima o por debajo del eje X . Así el signo del seno será positivo si está por encima y negativo si está por debajo.
Los siguientes gráficos muestran los distintos casos según en qué cuadrante se encuentre el ángulo:
En esta escena podrás ver como se representan las razones trigonométricas de un ángulo de cualquier cuadrante.
En esta escena podrás ver los valores y el signo de las 6 razones trigonométricas de un ángulo de cualquier cuadrante.
Si el lado origen de un ángulo orientado es el semieje OX, del cuadrante en que está el lado extremo se dice "cuadrante del ángulo". En este video definimos las razones trigonométricas de un ángulo orientado, y para ello empleamos las coordenadas de un punto cualquiera (a;b) del lado extremo.
3 ejercicios sobre razones trigonométricas de ángulos orientados.
Relaciones fundamentales de la trigonometría (ángulos de cualquier cuadrante)
Las relaciones fundamentales de la trigonometría, ya estudiadas anteriormente, siguen siendo válidas con las definiciones dadas para ángulos de cualquier cuadrante.
Practica con las relaciones fundamentales de la trigonometría y ponte a prueba con una autoevaluación. En estas actividades tendrás que tener en cuenta en qué cuadrante está el ángulo para determinar el signo de la razón trigonométrica.
- Si pulsas el botón "EJERCICIO" cambiarán los datos del problema.
- Si pulsas el botón "AUTOEVALUACIÓN" podrás realizar una tanda de ejercicios para comprobar lo que sabes.
Actividad: Razones trigonométricas de ángulos cualesquiera
Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones:
|
Ejercicios propuestos
Ejercicios propuestos: Razones trigonométricas de ángulos cualesquiera |