Resolución de triángulos cualesquiera (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 16:01 19 sep 2016
Coordinador (Discusión | contribuciones)
(Actividades)
← Ir a diferencia anterior
Revisión de 19:49 19 sep 2016
Coordinador (Discusión | contribuciones)
(Teorema de los senos)
Ir a siguiente diferencia →
Línea 79: Línea 79:
}} }}
{{p}} {{p}}
 +===Ejercicios propuestos===
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Teorema de los senos''
 +|cuerpo=
 +(Pág. 117)
 +
 +[[Imagen:red_star.png|12px]] 5, 6
 +
 +}}
==Teorema del coseno== ==Teorema del coseno==

Revisión de 19:49 19 sep 2016

Tabla de contenidos

Teorema de los senos

ejercicio

Teorema de los senos


En un triángulo cualquiera se cumplen las siguientes igualdades:

\cfrac{a}{sen \, \hat A}=\cfrac{b}{sen \, \hat B}=\cfrac{c}{sen \, \hat C}


Además, todos estos cocientes son iguales a 2R\,, donde R\, es el radio de la circunferencia circunscrita al triángulo.

ejercicio

Ejemplo: Teorema de los senos


De un triángulo sabemos que: a = 6 m, B = 45° y C = 105°. Calcula los restantes elementos.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema de los senos


(Pág. 117)

5, 6

Teorema del coseno

ejercicio

Teorema del coseno


En un triángulo cualquiera se cumplen la siguiente relación:

c^2=a^2+b^2-2ab \, cos \, \hat C

Analogamente:

b^2=a^2+c^2-2ac \, cos \, \hat B

a^2=b^2+c^2-2bc \, cos \, \hat A

ejercicio

Ejemplo: Teorema del coseno


Las diagonales de un paralelogramo miden 10 cm y 12 cm, y el ángulo que forman es de 48° 15'. Calcular los lados.

Videotutoriales

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda