Números complejos: Forma polar (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 15:22 4 oct 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 15:25 4 oct 2016
Coordinador (Discusión | contribuciones)
(Forma polar de un número complejo)
Ir a siguiente diferencia →
Línea 11: Línea 11:
Dado un número complejo <math>z=a+bi\,</math> Dado un número complejo <math>z=a+bi\,</math>
-*El '''módulo''' de <math>z\,</math> es la longitud del vector que lo representa, es decir, la distancia entre el afijo <math>(a,b)\,</math> y el origen <math>(0,0)\,)</math>. Se designa por <math>|z|\,</math>.+*El '''módulo''' de <math>z\,</math> es la longitud del vector que lo representa, es decir, la distancia entre el afijo <math>(a,b)\,</math> y el origen <math>(0,0)\,)</math>. Se designa por <math>r=|z|\,</math>.
-*El '''argumento''' de <math>z\,</math> (<math>z \ne 0</math>), es el ángulo que forma el vector con el eje X . Se designa por <math>arg(z)\,</math>. (Si <math>z=0\,</math>, su argumento es 0).+*El '''argumento''' de <math>z\,</math> (<math>z \ne 0</math>), es el ángulo que forma el vector con el eje X . Se designa por <math>\phi=arg(z)\,</math>. (Si <math>z=0\,</math>, su argumento es 0).
}} }}
{{p}} {{p}}
{{Caja_Amarilla|texto=La '''forma polar''' del número complejo <math>z\,</math>, se designa <math>r_\phi \,</math>, siendo <math>r=|z|\,</math> y <math>\phi=arg(z)\,</math>.}} {{Caja_Amarilla|texto=La '''forma polar''' del número complejo <math>z\,</math>, se designa <math>r_\phi \,</math>, siendo <math>r=|z|\,</math> y <math>\phi=arg(z)\,</math>.}}
}} }}
 +
==Paso de forma binómica a polar== ==Paso de forma binómica a polar==
{{Teorema|titulo=Proposición|enunciado= {{Teorema|titulo=Proposición|enunciado=

Revisión de 15:25 4 oct 2016

Tabla de contenidos

Forma polar de un número complejo

Dado un número complejo z=a+bi\,

  • El módulo de z\, es la longitud del vector que lo representa, es decir, la distancia entre el afijo (a,b)\, y el origen (0,0)\,). Se designa por r=|z|\,.
  • El argumento de z\, (z \ne 0), es el ángulo que forma el vector con el eje X . Se designa por \phi=arg(z)\,. (Si z=0\,, su argumento es 0).

La forma polar del número complejo z\,, se designa r_\phi \,, siendo r=|z|\, y \phi=arg(z)\,.

Fig. 1: Un número complejo queda determinado por su módulo y su argumento.
Aumentar
Fig. 1: Un número complejo queda determinado por su módulo y su argumento.

Paso de forma binómica a polar

ejercicio

Proposición


Dado un número complejo z=a+bi\, su forma polar r_\phi \, se obtiene de la siguiente manera:

  • r = |z| = \sqrt{a^2+b^2}\quad     
  • \phi=arctg \, \cfrac{b}{a}

ejercicio

Ejemplo: Paso de forma binómica a polar


Pasa a forma polar el número complejo z=2+2i\,

ejercicio

Actividad interactiva: Paso de forma binómica a polar


Pasa los siguientes números complejos a forma polar y comprueba tus resultados en la escena:
a)1+2i\,     b)-2+3i\,     c) -3-i\,      d)5-4i\,

Paso de forma polar a binómica

Dado un número complejo r_\phi \,, su forma binómica a+bi\, se obtiene de la siguiente manera:

  • a=r \cdot cos \, \phi
  • b=r \cdot sen \, \phi

ejercicio

Ejemplo: Paso de forma polar a binómica


Pasa a forma binómica el número complejo z=2_{30^\circ}

ejercicio

Actividad interactiva: Paso de forma polar a binómica


Pasa los siguientes números complejos a forma binómica y comprueba tus resultados en esta escena:
a)1_{225^\circ}     b)4_{0^\circ}      c) 3_{270^\circ}     d)2_{295^\circ}     e)8_{90^\circ}     f)2_{120^\circ}

Forma trigonométrica de un número complejo

Según lo visto en el apartado anterior:

z=a+bi= r \cdot cos \, \phi + r \cdot sen \, \phi \cdot i=r \, (cos \, \phi + i \, sen \, \phi)

Se llama forma trigonométrica de un número complejo, a la expresión

z=r \, (cos \, \phi + i \, sen \, \phi)

ejercicio

Ejemplo: Forma trigonométrica de un complejo


Pasa a forma trigonométrica el número complejo z=2_{60^\circ}

ejercicio

Ejercicios:Formas polar y trigonométrica de un número complejo


Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda