Números complejos: Forma polar (1ºBach)
De Wikipedia
(Diferencia entre revisiones)
Revisión de 15:22 4 oct 2016 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 15:25 4 oct 2016 Coordinador (Discusión | contribuciones) (→Forma polar de un número complejo) Ir a siguiente diferencia → |
||
Línea 11: | Línea 11: | ||
Dado un número complejo <math>z=a+bi\,</math> | Dado un número complejo <math>z=a+bi\,</math> | ||
- | *El '''módulo''' de <math>z\,</math> es la longitud del vector que lo representa, es decir, la distancia entre el afijo <math>(a,b)\,</math> y el origen <math>(0,0)\,)</math>. Se designa por <math>|z|\,</math>. | + | *El '''módulo''' de <math>z\,</math> es la longitud del vector que lo representa, es decir, la distancia entre el afijo <math>(a,b)\,</math> y el origen <math>(0,0)\,)</math>. Se designa por <math>r=|z|\,</math>. |
- | *El '''argumento''' de <math>z\,</math> (<math>z \ne 0</math>), es el ángulo que forma el vector con el eje X . Se designa por <math>arg(z)\,</math>. (Si <math>z=0\,</math>, su argumento es 0). | + | *El '''argumento''' de <math>z\,</math> (<math>z \ne 0</math>), es el ángulo que forma el vector con el eje X . Se designa por <math>\phi=arg(z)\,</math>. (Si <math>z=0\,</math>, su argumento es 0). |
}} | }} | ||
{{p}} | {{p}} | ||
{{Caja_Amarilla|texto=La '''forma polar''' del número complejo <math>z\,</math>, se designa <math>r_\phi \,</math>, siendo <math>r=|z|\,</math> y <math>\phi=arg(z)\,</math>.}} | {{Caja_Amarilla|texto=La '''forma polar''' del número complejo <math>z\,</math>, se designa <math>r_\phi \,</math>, siendo <math>r=|z|\,</math> y <math>\phi=arg(z)\,</math>.}} | ||
}} | }} | ||
+ | |||
==Paso de forma binómica a polar== | ==Paso de forma binómica a polar== | ||
{{Teorema|titulo=Proposición|enunciado= | {{Teorema|titulo=Proposición|enunciado= |
Revisión de 15:25 4 oct 2016
Menú:
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
Forma polar de un número complejo
Dado un número complejo
La forma polar del número complejo , se designa , siendo y . |
Paso de forma binómica a polar
Proposición
Dado un número complejo su forma polar se obtiene de la siguiente manera:
Demostración:
|
Ejemplo: Paso de forma binómica a polar
- Pasa a forma polar el número complejo
Solución:
- Calculamos el módulo:
- Calculamos el argumento:
- Por tanto, su forma polar es:
Actividad interactiva: Paso de forma binómica a polar
Actividad: En esta escena puedes pasar un complejo de forma binómica a polar. Puedes variar los valores de a y b o mover el afijo con el ratón. |
Paso de forma polar a binómica
Dado un número complejo , su forma binómica se obtiene de la siguiente manera:
Ejemplo: Paso de forma polar a binómica
- Pasa a forma binómica el número complejo
Solución:
- Calculamos la parte real:
- Calculamos su parte imaginaria:
- Por tanto, su forma binómica es:
Actividad interactiva: Paso de forma polar a binómica
Actividad: En esta escena puedes pasar un complejo de forma polar a binómica. Puedes variar los valores del módulo y del argumento. |
Forma trigonométrica de un número complejo
Según lo visto en el apartado anterior:
Se llama forma trigonométrica de un número complejo, a la expresión
|
Ejemplo: Forma trigonométrica de un complejo
- Pasa a forma trigonométrica el número complejo
Solución:
- Tan sólo hay que aplicar la fórmula:
Formas polar y trigonométrica de un número complejo (11´22") Sinopsis:
Videotutorial.
Ejercicios:Formas polar y trigonométrica de un número complejo 4 ejercicios (10´34") Sinopsis: Videotutorial. 4 ejercicios (7´) Sinopsis: Videotutorial. 9 ejercicios (10´37") Sinopsis: Videotutorial. |