Lugares geométricos (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:27 16 oct 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 11:29 16 oct 2016
Coordinador (Discusión | contribuciones)
(Bisectriz del ángulo entre dos rectas)
Ir a siguiente diferencia →
Línea 74: Línea 74:
{{p}} {{p}}
-{{Teorema|titulo=Proposición|enunciado=La bisectriz del ángulo entre dos rectas es un par de rectas perpendiculares|demo=}}+{{Teorema|titulo=Proposición|enunciado=La bisectriz del ángulo entre dos rectas son un par de rectas perpendiculares|demo=}}
{{p}} {{p}}
{{Ejemplo|titulo=Ejemplo: ''Bisectriz del ángulo entre dos rectas''|enunciado=Halla las ecuaciones de las bisectrices del ángulo que forman las rectas <math>r: \, 11x+2y-20=0</math> y <math>s: \, 2x+11y+7=0</math>, y la represéntalas gráficamente. {{Ejemplo|titulo=Ejemplo: ''Bisectriz del ángulo entre dos rectas''|enunciado=Halla las ecuaciones de las bisectrices del ángulo que forman las rectas <math>r: \, 11x+2y-20=0</math> y <math>s: \, 2x+11y+7=0</math>, y la represéntalas gráficamente.

Revisión de 11:29 16 oct 2016

Lugar geométrico

Se llama lugar geométrico a un conjunto de puntos que cumplen una cierta propiedad.

Vamos a estudiar a continuación algunos lugares geométricos como la mediatriz de un segmento o la bisectriz de un ángulo. En cada caso buscaremos una ecuación que describa a dicho lugar geométrico.

Mediatriz de un segmento

La mediatriz de un segmento \overline{AB}, es el lugar geométrico de los puntos P\,, que equidistan de los extremos A\, y B\,.

    

\big \{P(x,y) \, / \; d(P,A)=d(P,B) \big \}

ejercicio

Proposición


La mediatriz de un segmento es una recta.

ejercicio

Ejemplo: Mediatriz de un segmento


Halla la ecuación de la mediatriz del segmento de extremos A(-3,4)\, y B(1,0)\, y represéntala gráficamente.

Bisectriz del ángulo entre dos rectas

La bisectriz del ángulo que forman las rectas r\, y s\,, es el lugar geométrico de los puntos P\,, que equidistan de los lados r\, y s\,.

d(X,r)=d(X,s)\,

ejercicio

Proposición


La bisectriz del ángulo entre dos rectas son un par de rectas perpendiculares

ejercicio

Ejemplo: Bisectriz del ángulo entre dos rectas


Halla las ecuaciones de las bisectrices del ángulo que forman las rectas r: \, 11x+2y-20=0 y s: \, 2x+11y+7=0, y la represéntalas gráficamente.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda