Plantilla:Def Multiplo y divisor
De Wikipedia
(Diferencia entre revisiones)
Revisión de 19:32 11 sep 2016 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 10:09 20 oct 2016 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 1: | Línea 1: | ||
- | {{Caja_Amarilla|texto=Si <math>a\;</math> y {{Sube|porcentaje=+10%|contenido=<math>b\;</math>}} <math>(a > b)\;</math> están emparentados por la relación de divisibilidad ({{Sube|porcentaje=+20%|contenido=<math>a : b\;</math>}} es exacta), entonces decimos que: | + | {{Caja_Amarilla|texto=Si <math>a\;</math> y {{Sube|porcentaje=+10%|contenido=<math>b\;</math>}} <math>(a > b)\;</math> están emparentados por la relación de divisibilidad, es decir, {{Sube|porcentaje=+20%|contenido=<math>a : b\;</math>}} es exacta, entonces decimos que: |
*{{Sube|porcentaje=+10%|contenido=<math>a\;</math>}} es '''multiplo''' {{Sube|porcentaje=+15%|contenido=<math>b\;</math>}} y lo expresaremos simbólicamente: {{Sube|porcentaje=+30%|contenido=<math>a= \dot b</math>}}. | *{{Sube|porcentaje=+10%|contenido=<math>a\;</math>}} es '''multiplo''' {{Sube|porcentaje=+15%|contenido=<math>b\;</math>}} y lo expresaremos simbólicamente: {{Sube|porcentaje=+30%|contenido=<math>a= \dot b</math>}}. |
Revisión de 10:09 20 oct 2016
Si y están emparentados por la relación de divisibilidad, es decir, es exacta, entonces decimos que:
- es multiplo y lo expresaremos simbólicamente: .
- es divisor de y lo expresaremos simbólicamente: .
- La división 60:15=4 es exacta. Entonces 60 es un múltiplo de 15 y 15 es un divisor de 60 .
- Fíjate que 4 también es divisor de 60 porque la división 60:4=15 es también exacta. Por tanto, los divisores siempre van por parejas.