Plantilla:Def Multiplo y divisor

De Wikipedia

(Diferencia entre revisiones)
Revisión de 10:09 20 oct 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión de 10:10 20 oct 2016
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 11: Línea 11:
{{p}} {{p}}
{{Teorema|titulo=Proposición|enunciado= {{Teorema|titulo=Proposición|enunciado=
-:Si {{Sube|porcentaje=+10%|contenido=<math>a\;\!</math>}} es multiplo de {{Sube|porcentaje=+15%|contenido=<math>b\,</math>}} , entonces existe un número natural {{Sube|porcentaje=+15%|contenido=<math>k\;\!</math>}} tal que {{Sube|porcentaje=+20%|contenido=<math>a=b \cdot k</math>}}.+Si {{Sube|porcentaje=+10%|contenido=<math>a\;\!</math>}} es multiplo de {{Sube|porcentaje=+15%|contenido=<math>b\,</math>}} , entonces existe un número natural {{Sube|porcentaje=+15%|contenido=<math>k\;\!</math>}} tal que {{Sube|porcentaje=+20%|contenido=<math>a=b \cdot k</math>}}.
|demo=En efecto, si ''a'' es multiplo de ''b'', entonces la división ''a:b'' es exacta. Si llamamos ''k'' al cociente, se cumple que {{Sube|porcentaje=+20%|contenido=<math>a=b \cdot k</math>}}.}} |demo=En efecto, si ''a'' es multiplo de ''b'', entonces la división ''a:b'' es exacta. Si llamamos ''k'' al cociente, se cumple que {{Sube|porcentaje=+20%|contenido=<math>a=b \cdot k</math>}}.}}
{{p}} {{p}}

Revisión de 10:10 20 oct 2016

Si a\; y b\; (a > b)\; están emparentados por la relación de divisibilidad, es decir, a : b\; es exacta, entonces decimos que:

  • a\; es multiplo b\; y lo expresaremos simbólicamente: a= \dot b.
  • b\; es divisor de a\; y lo expresaremos simbólicamente: b|a \;\!.

ejercicio

Proposición


Si a\;\! es multiplo de b\, , entonces existe un número natural k\;\! tal que a=b \cdot k.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda