Plantilla:Áreas y volúmenes en el espacio

De Wikipedia

(Diferencia entre revisiones)
Revisión de 13:33 1 dic 2016
Coordinador (Discusión | contribuciones)
(Prisma)
← Ir a diferencia anterior
Revisión de 13:36 1 dic 2016
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 2: Línea 2:
{{Prisma}} {{Prisma}}
{{p}} {{p}}
- +===Ortoedro===
-==Pirámide==+{{Ortoedro}}
-{{Tabla3+
-|celda1=+
-<center>[[Imagen:piramide.gif |175 px]]</center>+
-|celda2={{p}}+
-* '''Área:'''{{p}}+
-{{Caja|contenido=<math>A=A_l+A_b \;\!</math>}}{{p}}+
-{{Caja|contenido=<math>A_l=\;\!</math> Suma áreas triángulos}}+
-* '''Volumen:'''{{p}}+
-{{Caja|contenido=<math>V=\cfrac{1}{3} \cdot A_b \cdot h</math>}}+
-|celda3={{p}}+
-* '''Elementos:'''{{p}}+
-:<math>A_b\;\!</math>: Área de la base.+
-:<math>A_l\;\!</math>: Área lateral.+
-:<math>h\;\!</math>: altura.+
-}}+
{{p}} {{p}}
-{{Geogebra_enlace+===Cubo===
-|descripcion=En esta escena podrás ver el desarrollo de una pirámide y calcular su volumen y su áreas.+{{cubo}}
-|enlace=[https://ggbm.at/MNTfhgXA Desarrollo, áreas y volumen de la pirámide]+==Pirámide==
-}}+{{pirámide}}
{{p}} {{p}}
===Pirámide truncada=== ===Pirámide truncada===

Revisión de 13:36 1 dic 2016

Tabla de contenidos

Prisma

  • Áreas:

A=A_l+2 \cdot A_b

A_l=P_b \cdot h

  • Volumen:

V=A_b \cdot h

  • Elementos:

A_b\;\!: Área de la base.
A_l\;\!: Área lateral.
P_b\;\!: Perímetro de la base.
h\;\!: altura.

Ortoedro

Como sabemos, un ortoedro es un prisma recto de base rectangular o cuadrada.

Imagen:ortoedro.gif

  • Área:

A=2ab+2ac+2bc\;\!

  • Volumen:

V=a \cdot b \cdot c

  • Elementos:

a, \, b, \, c\;\!: aristas.

Cubo

Un caso particular de ortoedro es el cubo cuyas caras son todas cuadradas.

Imagen:cubo2.gif

  • Área:

A=6a^2\;\!

  • Volumen:

V=a^3\;\!

  • Elementos:

a\;\!: arista.

Pirámide

  • Área:

A=A_l+A_b \;\!

A_l=\;\! Suma áreas triángulos

  • Volumen:

V=\cfrac{1}{3} \cdot A_b \cdot h

  • Elementos:

A_b\;\!: Área de la base.
A_l\;\!: Área lateral.
h\;\!: altura.

ejercicio

Propiedad


Si tenemos un prisma y una pirámide con la misma base y la misma altura, entonces el volumen del prisma es igual a tres veces el volumen de la pirámide.

Relación entre el volumen de un prisma y una pirámide

http://mundogenial.com

Pirámide truncada

Imagen:piramidetruncada.png

  • Área:

A=A_l+A_b+A_B \;\!

A_l=\;\! Suma áreas trapecios

  • Volumen:

V=V_B-V_b\;\!

  • Elementos:

A_b\;\!: Área de la base superior.
A_B\;\!: Área de la base inferior.
A_l\;\!: Área lateral.
h\;\!: altura.
V_b\;\!: Volumen de la pirámide pequeña de base b.
V_B\;\!: Volumen de la pirámide completa de base B.

Cilindro

  • Área:

A=A_l+2 \cdot A_b

A_l=2 \pi rg\;\!

A_b=\pi r^2\;\!

  • Volumen:

V=A_b \cdot h

  • Elementos:

A_b\;\!: Área de la base.
A_l\;\!: Área lateral.
h\;\!: altura.
g\;\!: generatriz.
r\;\!: radio.

Cono

  • Área:

A=A_l+A_b \;\!

A_l=\pi rg\;\!

A_b=\pi r^2\;\!

  • Volumen:

V=\cfrac{1}{3} \cdot A_b \cdot h

  • Elementos:

A_b\;\!: Área de la base.
A_l\;\!: Área lateral.
h\;\!: altura.
g\;\!: generatriz.
r\;\!: radio.

Cono truncado

Imagen:conotruncado.png

  • Área:

A=A_l+\pi r_1^2+\pi r_2^2 \;\!

A_l=\pi (r_1+r_2)g\;\!

  • Volumen:

V=V_1-V_2\;\!

  • Elementos:

A_l\;\!: Área lateral.
h\;\!: altura.
V_1\;\!: Volumen del cono completo.
V_2\;\!: Volumen del cono pequeño eliminado.

Esfera

  • Área:

A=4 \pi r^2 \;\!

  • Volumen:

V=\cfrac{4}{3} \cdot \pi r^3

  • Elementos:

r\;\!: radio.

Ejercicios

ejercicio

Actividad Interactiva: Volúmenes de cuerpos irregulares


Actividad 1. Halla el volumen de las siguientes figuras.
Actividad 2. Halla el volumen de las siguientes figuras.
Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda