Transformaciones elementales de funciones (1ºBach)
De Wikipedia
| Revisión de 07:55 23 ene 2009 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión actual Coordinador (Discusión | contribuciones) |
||
| Línea 2: | Línea 2: | ||
| |ir= | |ir= | ||
| |ampliar= | |ampliar= | ||
| - | |repasar=[http://www.maralboran.org/web_ma/algebraconpapas/index.htm Test de Álgebra] | + | |repasar= |
| |enlaces= | |enlaces= | ||
| }} | }} | ||
| {{p}} | {{p}} | ||
| - | ==Traslación vertical== | + | __TOC__ |
| - | {{Caja_Amarilla|texto=Sea <math>f(x)\;</math> una función y <math>k>0\;</math> un número real, entonces la gráfica de la función <math>f(x)+k\;</math> se obtiene a partir de la de <math>f(x)\;</math> desplazándola <math>k\;</math> unidades hacia arriba y la de <math>f(x)-k\;</math> desplazándola k unidades hacia abajo.}} | + | |
| {{p}} | {{p}} | ||
| - | {{AI2|titulo=Actividad Interactiva: ''Traslación vertical de una función''|cuerpo= | + | (Pág. 256) |
| - | {{ai_cuerpo | + | |
| - | |enunciado='''Actividad 1.''' Representación gráfica de una función <math>f(x)\;</math> cualquiera y de su transformada <math>f(x) \pm k</math>. | + | |
| - | |actividad= | + | |
| - | En esta escena tienes la gráfica de la función <math>f(x) = x^2\;</math> y la de de f(x)+1=x^2+1\;. Prueba a introducir otras funciones: f(x)+2, f(x)-3 y compáralas con f(x). | + | |
| - | + | ||
| {{p}} | {{p}} | ||
| - | <center><iframe> | + | {{Transformaciones elementales de funciones (1ºBach)}} |
| - | url=http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4a.html | + | {{p}} |
| - | width=420 | + | ==Ejercicios propuestos== |
| - | height=360 | + | {{ejercicio |
| - | name=myframe | + | |titulo=Ejercicios propuestos: ''Transformaciones elementales de funciones'' |
| - | </iframe></center> | + | |cuerpo= |
| - | <center>[http://maralboran.org/web_ma/descartes/Analisis/El_pinta_graficas/grafic_4a.html '''Click''' aquí si no se ve bien la escena]</center> | + | (Pág. 256-257) |
| - | }} | + | |
| + | [[Imagen:red_star.png|12px]] 1, 2, 3 | ||
| + | |||
| + | |||
| }} | }} | ||
| + | |||
| [[Categoría: Matemáticas]][[Categoría: Funciones]] | [[Categoría: Matemáticas]][[Categoría: Funciones]] | ||
Revisión actual
| Enlaces internos | Para repasar o ampliar | Enlaces externos |
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 256)
Traslación vertical y horizontal
- Traslación vertical: Sea
una función y
un número real, entonces la gráfica de la función
se obtiene a partir de la de
desplazándola
unidades hacia arriba y la de
desplazándola
unidades hacia abajo.
- Traslación horizontal: Sea
una función y
un número real, entonces la gráfica de la función
se obtiene a partir de la de
desplazándola
unidades hacia la izquierda y la de
desplazándola
unidades hacia la derecha.
En esta escena podrás ver la representación conjunta una función y su transformada por traslación horizontal o vertical.
Representa la función:
.
Representa la función:
.
Representa la función:
.
Representa la función:
.
Simetrías
- Simetría respecto del eje X: Las gráficas de las funciones
y
son simétricas respecto del eje de abscisas.
- Simetría respecto del eje Y: Las gráficas de las funciones
y
son simétricas respecto del eje de ordenadas.
- Simetría respecto del origen: Las gráficas de las funciones
y
son simétricas respecto del origen de coordenadas.
En esta escena podrás ver la representación conjunta una función y su simétrica.
La función "f" se dice "par" si f(-x) = f(x), y se dice "impar" si f(-x) = -f(x). Si "f" es par, su gráfica es simétrica respecto al eje de ordenadas. Si "f" es impar, su gráfica es simétrica respecto al origen de coordenadas. Obvio: si Dom f. no es simétrico respecto al punto "0", la función "f" no es par ni impar.
Dilatación y contracción
Vertical:
- Si
, la gráfica de la función
es una dilatación vertical de la gráfica de
.
- Si
, la gráfica de la función
es una contracción vertical vertical de la gráfica de
.
Horizontal:
- Si
, la gráfica de la función
es una contracción horizontal de la gráfica de
.
- Si
, la gráfica de la función
es una dilatación horizontal de la gráfica de
.
En esta escena podrás ver la representación conjunta una función y su transformada por dilatación o contracción.
Representa las funciones:
1)
2)
Representa las funciones:
1)
2)
Representa las funciones:
1)
2)
2)
Actividades
En esta escena podrás practicar las transformaciones de funciones. Se te propondrán algunos ejercicios.
Representa
a partir de la gráfica de
Determina la ecuación de una función tipo valor absoluto a partir de su gráfica, describiendo las transformaciones sufridas a partir de la gráfica de
.
Halla la ecuación de la función que resulta de reflejar sobre el eje X y comprimir verticalmente en un factor de 8/3, la función
.
Tutorial en el que se explica como representar funciones del tipo f(x)=ax^2+bx+c utilizando la traslación de ejes.
Tutorial en el que se explica como representar funciones hiperbólicas expresadas de la forma f(x)=a/(x+b) + c, utilizando un algoritmo general.
Ejercicios propuestos
|
Ejercicios propuestos: Transformaciones elementales de funciones |

