Plantilla:Racionalizacion
De Wikipedia
Revisión de 12:22 23 sep 2016 Coordinador (Discusión | contribuciones) (→Caso 3: Denominador con sumas y restas de raíces) ← Ir a diferencia anterior |
Revisión de 08:10 21 abr 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 44: | Línea 44: | ||
:<math> = \frac{{2({\sqrt{2}-\sqrt{3}}) }}{{2}-{3}} = \frac{{2({\sqrt{2}-\sqrt{3}}) }}{{-1}} = {-2\sqrt{2}+2\sqrt{3}}</math> | :<math> = \frac{{2({\sqrt{2}-\sqrt{3}}) }}{{2}-{3}} = \frac{{2({\sqrt{2}-\sqrt{3}}) }}{{-1}} = {-2\sqrt{2}+2\sqrt{3}}</math> | ||
+ | }} | ||
+ | {{p}} | ||
+ | {{Video_enlace_unicoos | ||
+ | |titulo1=Racionalización | ||
+ | |duracion=7'48" | ||
+ | |sinopsis=4 ejemplos. | ||
+ | |url1=https://www.youtube.com/watch?v=KTdBezXCjk0 | ||
}} | }} | ||
{{p}} | {{p}} |
Revisión de 08:10 21 abr 2017
Se llama racionalización al procedimiento por el cual a partir de una fracción con raíces en el denominador obtenemos otra fracción equivalente sin raíces en el denominador
Caso 1: Denominador con raíces cuadradas
Para racionalizar uno radical de este tipo se debe multiplicar el numerador y el denominador de la fracción por el denominador de la misma.
Ejemplo: Caso 1: Denominador con raíces cuadradas
Racionalizar
En este caso hay que multiplicar numerador y denominador por
Caso 2: Denominador con otras raíces
En este caso, los exponentes del radicando del radical por el que se deben multiplicar el numerador y denominador de la fracción será la diferencia entre los exponentes actuales y el índice (o múltiplo del indice más cercano) del radical.
Ejemplo: Caso 2: Denominador con otras raíces
Racionalizar
En este ejemplo, hay que multiplicar numerador y denominador por , ya que éste es el radical que al ser multiplicado por el denominador los exponentes de las cantidades subradicales serán iguales al índice de la raíz:
Caso 3: Denominador con sumas y restas de raíces
Para este último caso, se multiplica y divide por la expresión conjugada del denominador (solo se le cambia el segundo signo de la expresión)
Ejemplo: Caso 3: Denominador con sumas y restas de raíces
Racionalizar
En este caso hay que multiplicar el numerador y el denominador por (este resultado es el que da el producto notable de los binomios conjugados):

4 ejemplos.