Números complejos: Forma polar (1ºBach)
De Wikipedia
Revisión de 06:07 6 oct 2016 Coordinador (Discusión | contribuciones) (→Familias de complejos en forma polar) ← Ir a diferencia anterior |
Revisión de 10:53 13 jun 2017 Coordinador (Discusión | contribuciones) (→Ejercicios propuestos) Ir a siguiente diferencia → |
||
Línea 238: | Línea 238: | ||
}} | }} | ||
- | ==Ejercicios propuestos== | + | ==Ejercicios== |
+ | {{Video_enlace_matemovil | ||
+ | |titulo1= Ejercicio 1 | ||
+ | |duracion=7´40" | ||
+ | |url1=https://www.youtube.com/watch?v=mSdDyGvfInc&index=49&list=PL3KGq8pH1bFRmhsCe2sPnUj199NNvQWQZ | ||
+ | |sinopsis=Dados los complejos <math>z_1=3+2i\;</math> y <math>z_2=2-i\;</math>, halla <math>z_1 \cdot z_2\;</math> y <math>z_1 : z_2\;</math>. | ||
+ | }} | ||
+ | ===Ejercicios propuestos=== | ||
{{ejercicio | {{ejercicio | ||
|titulo=Ejercicios propuestos: ''Forma polar de un número complejo'' | |titulo=Ejercicios propuestos: ''Forma polar de un número complejo'' |
Revisión de 10:53 13 jun 2017
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 152)
Forma polar de un número complejo
Dado un número complejo
La forma polar del número complejo , se designa , siendo y . (El cero, al no tener argumento, no se puede poner en forma polar) |
En esta escena podrás ver como se representan los números complejos en forma polar. Mueve el deslizador para ver algunos ejemplos y completa los que faltan en tu cuaderno.
Paso de forma binómica a polar
Procedimiento
Dado un número complejo su forma polar se obtiene de la siguiente manera:
|
Ejemplo: Paso de forma binómica a polar
Pasa a forma polar:
- a)
- b)
- c)
a)
Calculamos el módulo:
Calculamos el argumento:
Solución:
b)
Solución:
c)
Solución:Pasa los siguientes números complejos a forma polar y comprueba tus resultados en la escena:
- a) b) c) d)
En esta escena puedes pasar un complejo de forma binómica a polar. Puedes variar los valores de a y b o mover el afijo con el ratón.
Actividad: Paso de forma binómica a polar a) Pasa a forma polar. b) Halla el argumento de . b) Halla el módulo de . Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: a) convert 1-i to polar form b) arg (1-i) in degrees o arg (1-i) c) | 1 − i | |
(Pág. 153)
Paso de forma polar a binómica
Ejemplo: Paso de forma polar a binómica
Pasa a forma binómica el número complejo
Calculamos la parte real:
Calculamos su parte imaginaria:
Pasa los siguientes números complejos a forma binómica y comprueba tus resultados en esta escena:
- a) b) c) d) e) f)
En esta escena puedes pasar un complejo de forma polar a binómica. Puedes variar los valores del módulo y del argumento.
Forma trigonométrica de un número complejo
Según lo visto en el apartado anterior:
Se llama forma trigonométrica de un número complejo, a la expresión
|
Ejemplo: Forma trigonométrica de un complejo
Pasa a forma trigonométrica el número complejo
Tan sólo hay que aplicar la fórmula:
Videotutorial.
Videotutorial.
Videotutorial.
Videotutorial.
Familias de complejos en forma polar
Ejercicio resuelto: Familias de complejos en forma polar
Representa los siguientes conjuntos de números complejos:
- a)
- b)
- c)
- d)
Como , los tres primeros apartados se resuelven de la siguiente manera:
- a) Representando la curva se obtiene una circunferncia de centro O y radio 3.
- b) Representando la curva se obtiene un círculo de centro O y radio 3sin la circunferencia del borde.
- c) Representando la curva se obtiene una corona circular de radios 1 y 3 y centro O, incluidas las circunferencias de los bordes.
Como :
- d) Representando la recta con se obtiene una semirrecta abierta de origen O que forma un ángulo de 30º con el eje X.
En esta escena de Geogebra podrás ver como se representan gráficamente las soluciones.
Ejercicios
Dados los complejos y , halla y .
Ejercicios propuestos
Ejercicios propuestos: Forma polar de un número complejo |