Límite de una función (2ºBach)
De Wikipedia
Revisión de 17:23 21 jun 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 07:30 22 jun 2017 Coordinador (Discusión | contribuciones) (→Límite de de una función en un punto) Ir a siguiente diferencia → |
||
Línea 7: | Línea 7: | ||
{{p}} | {{p}} | ||
==Límite de de una función en un punto== | ==Límite de de una función en un punto== | ||
- | {{Límite de de una función en un punto}} | + | [[Imagen:Límite01.svg|thumb|250px|Visualización de los parámetros utilizados en la definición de límite.]] |
+ | El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto. | ||
+ | |||
+ | De manera informal, diremos que una función <math>f ~</math> tiene límite <math>L~</math> en <math>c~</math> , o que <math>f ~</math> tiende a <math>L ~</math> cuando x se acerca a <math>c ~</math> si se puede hacer que <math>f(x)~</math> esté tan cerca como queramos de <math>L ~</math> haciendo que <math>x~</math> esté suficientemente cerca de <math>c~</math>, siendo <math>x~</math> distinto de <math>c~</math>. | ||
+ | |||
+ | Los conceptos ''cerca'' y ''suficientemente cerca'' son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice: | ||
+ | |||
+ | {{Caja_Amarilla|texto= | ||
+ | El límite de una función <math>f(x)\;</math>, cuando <math>x~</math> tiende a <math>c~</math>, es <math>L ~</math>, si y sólo si, para todo <math> \varepsilon > 0 \; </math>, existe un <math> \delta > 0 \; </math>, tal que para todo número real <math>x~</math> en el dominio de la función, si <math>0 < |x-c| < \delta \;</math> entonces <math> |f(x)-L| < \varepsilon \;</math>. | ||
+ | |||
+ | Esto, escrito en notación formal: | ||
+ | |||
+ | <math>\lim_{x\to c} \, \,f(x) = L</math><math>\iff \forall \varepsilon > 0 ,\,\,\, \exists \delta > 0 \, \ | \ \, \forall x \in \operatorname{Dom}(f), \,\,0<|x-c|<\delta \rightarrow |f(x)-L|<\varepsilon | ||
+ | </math> | ||
+ | }} | ||
+ | [[Imagen:Límite_f.gif|thumb|250px|Tomando valores arbitrarios de ''ε'', podemos elegir un δ para cada uno de estos, de modo que ''f''(''x'') y ''L'' se acerquen a medida que ''x'' se acerca a ''c''.]] | ||
+ | |||
+ | Esta es una formulación estricta del concepto de límite de una función real en un [[punto de acumulación]] del dominio de la función y se debe al matemático francés Luis Cauchy. | ||
+ | |||
{{p}} | {{p}} | ||
[[Categoría: Matemáticas]][[Categoría: Funciones]] | [[Categoría: Matemáticas]][[Categoría: Funciones]] |
Revisión de 07:30 22 jun 2017
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Calculadora |
Límite de de una función en un punto
El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto.
De manera informal, diremos que una función tiene límite en , o que tiende a cuando x se acerca a si se puede hacer que esté tan cerca como queramos de haciendo que esté suficientemente cerca de , siendo distinto de .
Los conceptos cerca y suficientemente cerca son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice:
El límite de una función , cuando tiende a , es , si y sólo si, para todo , existe un , tal que para todo número real en el dominio de la función, si entonces .
Esto, escrito en notación formal:
Esta es una formulación estricta del concepto de límite de una función real en un punto de acumulación del dominio de la función y se debe al matemático francés Luis Cauchy.