Límite de una función (2ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 07:52 22 jun 2017
Coordinador (Discusión | contribuciones)
(Definición informal de límite)
← Ir a diferencia anterior
Revisión de 08:03 22 jun 2017
Coordinador (Discusión | contribuciones)
(Definición formal de límite)
Ir a siguiente diferencia →
Línea 16: Línea 16:
{{Caja_Amarilla|texto= {{Caja_Amarilla|texto=
-El límite de una función <math>f(x)\;</math>, cuando <math>x~</math> tiende a <math>c~</math>, es <math>L ~</math>, si y sólo si, para todo <math> \varepsilon > 0 \; </math>, existe un <math> \delta > 0 \; </math>, tal que para todo número real <math>x~</math> en el dominio de la función, si <math>0 < |x-c| < \delta \;</math> entonces <math> |f(x)-L| < \varepsilon \;</math>.+El límite de una función <math>f(x)\;</math>, cuando <math>x~</math> tiende a <math>c~</math>, es <math>L ~</math>, si y sólo si, para todo <math> \varepsilon > 0 \; </math>, existe un <math> \delta > 0 \; </math>, tal que para todo número real <math>x~</math> del dominio de la función, si <math>0 < |x-c| < \delta \;</math>, entonces <math> |f(x)-L| < \varepsilon \;</math>.
Esto, escrito en notación formal: Esto, escrito en notación formal:

Revisión de 08:03 22 jun 2017

Límite de de una función en un punto

El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tener bien claro este concepto.

Definición informal de límite

De manera informal, diremos que una función f ~ tiene límite L~ en c~ , o que f ~ tiende a L ~ cuando x~ se acerca a c ~, si se puede hacer que f(x)~ esté tan cerca como queramos de L ~, haciendo que x~ esté suficientemente cerca de c~, pero sin llegar a c~.

Definición formal de límite

Los conceptos cerca y suficientemente cerca son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos. Entonces se dice:

El límite de una función f(x)\;, cuando x~ tiende a c~, es L ~, si y sólo si, para todo \varepsilon > 0 \;, existe un \delta > 0 \;, tal que para todo número real x~ del dominio de la función, si 0 < |x-c| < \delta \;, entonces |f(x)-L| < \varepsilon \;.

Esto, escrito en notación formal:

\lim_{x\to c}  \, \,f(x) = L\iff \forall \varepsilon > 0 ,\,\,\, \exists \delta > 0 \, \ | \ \, \forall x \in \operatorname{Dom}(f), \,\,0<|x-c|<\delta \rightarrow |f(x)-L|<\varepsilon
Visualización de los parámetros utilizados en la definición de límite.
Aumentar
Visualización de los parámetros utilizados en la definición de límite.
Tomando valores arbitrarios de ε, podemos elegir un δ para cada uno de estos, de modo que f(x) y L se acerquen a medida que x se acerca a c.
Aumentar
Tomando valores arbitrarios de ε, podemos elegir un δ para cada uno de estos, de modo que f(x) y L se acerquen a medida que x se acerca a c.

Esta es una formulación estricta del concepto de límite de una función real en un punto de acumulación del dominio de la función y se debe al matemático francés Luis Cauchy.

ejercicio

Límite de una función en un punto


Demostrar que \lim_{x\to 2}(3x-5)=1 usando la definición formal de límite.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda