Límite de una función (2ºBach)
De Wikipedia
Revisión de 11:13 23 jun 2017 Coordinador (Discusión | contribuciones) (→Variable que tiende a infinito) ← Ir a diferencia anterior |
Revisión de 11:22 23 jun 2017 Coordinador (Discusión | contribuciones) (→Función que tiende a infinito) Ir a siguiente diferencia → |
||
Línea 217: | Línea 217: | ||
=== Función que tiende a infinito === | === Función que tiende a infinito === | ||
- | [[File:LIMITE infinito.gif|thumb|Tomando ''R'' arbitrariamente grande, podemos establecer un ''δ'' de modo que cuando ''x'' se acerque a ''c'', ''f''(''x'') supere a ''R'' en valor absoluto.]] | + | {{Caja_Amarilla|texto= |
- | Dada cierta función ''f'', diremos que ''tiende a infinito'' cuando crezca indefinidamente, a medida que nos acercamos a cierto punto ''c'' en el dominio. Esto equivale a afirmar que ''f'' no está [[Acotado#Conjunto_acotado_en_el_conjunto_de_los_n.C3.BAmeros_reales|acotada]], para valores del dominio «suficientemente cercanos» a ''c''. Esto se denota así <math>\lim_{x\to c}f(x)=\infty</math>, o también, se escribe <math>f(x)\to\infty</math>. | + | '''Límite infinito:''' |
- | Si tomamos a la función ''f'' como una variable, por ejemplo, ''y'', podemos utilizar la definición de ''variable que tiende a infinito'', y combinarla con la definición de límite, de la siguiente manera. | + | *<math>\lim_{x\to c}f(x)=+\infty\iff\forall R>0, \exists \delta > 0 \ / \ \forall x \in Dom_f, \ 0 < |x-c|<\delta \Rightarrow f(x)>R</math>. |
- | {{Definición|1=El límite de una función ''f''(''x''), cuando ''x'' tiende a ''c'', es infinito si y sólo si para todo <math>R > 0</math> existe un <math>\delta > 0</math> tal que, para todo punto ''x'' en el dominio de ''f'', se cumple <math>0 < |x-c| < \delta \Rightarrow |f(x)|>R</math>. | + | *<math>\lim_{x\to c}f(x)=-\infty\iff\forall R<0, \exists \delta > 0 \ / \ \forall x \in Dom_f, \ 0 < |x-c|<\delta \Rightarrow f(x)<R</math>. |
+ | *<math>\lim_{x\to c}f(x)=\infty\iff\forall R>0, \exists \delta > 0 \ / \ \forall x \in Dom_f, \ 0 < |x-c|<\delta \Rightarrow |f(x)|>R</math>. | ||
}} | }} | ||
- | + | {{p}} | |
- | En símbolos, | + | {{Ejemplo|titulo=Ejemplo|enunciado= |
- | :<math>\lim_{x\to c}f(x)=\infty\iff\forall R>0, \exists \delta > 0 / \forall x \in \mathrm{Dom}(f), 0 < |x-c|<\delta \Rightarrow |f(x)|>R</math>. | + | Considera la función racional <math>f(x)=\frac{1}{x}</math>, cuya gráfica en el plano es una hipérbola equilátera centrada en el origen de coordenadas. Tomando <math>x\;</math> muy cercano a cero, la función toma valores muy grandes, por eso se dice que tiende a infinito cuando <math>x\;</math> tiende a cero. Vamos a comprobarlo haciendo uso de la definición. |
- | + | |demo=<math>\lim_{x\to 0}\frac{1}{x}=\infty\iff\forall R>0, \exists \delta > 0 / 0 < |x-0|<\delta \Rightarrow \left|\frac{1}{x}\right|>R</math> | |
- | Como ejemplo, tomemos la [[función racional]] <math>f(x)=\frac{1}{x}</math>, cuya gráfica en el plano es una [[hipérbola]] equilátera centrada en el origen de coordenadas. Tomando ''x'' muy cercano a cero, la función ''f''(''x'') toma valores muy grandes, por eso se dice que ''f''(''x'') tiende a infinito cuando ''x'' tiende a cero. Esto puede demostrarse con la definición. | + | |
- | {{Demostración|1=<math>\lim_{x\to 0}\frac{1}{x}=\infty\iff\forall R>0, \exists \delta > 0 / 0 < |x-0|<\delta \Rightarrow \left|\frac{1}{x}\right|>R</math> | + | |
Tomemos <math>\delta = \frac{1}{R}</math>, en este caso la demostración es inmediata ya que <math>0<|x-0|<\frac{1}{R}\Rightarrow|x|<\frac{1}{R}\Rightarrow\left|\frac{1}{x}\right|>R</math>. | Tomemos <math>\delta = \frac{1}{R}</math>, en este caso la demostración es inmediata ya que <math>0<|x-0|<\frac{1}{R}\Rightarrow|x|<\frac{1}{R}\Rightarrow\left|\frac{1}{x}\right|>R</math>. | ||
}} | }} | ||
Línea 234: | Línea 233: | ||
Cuando una función tiende a infinito en un punto determinado ''c'' del dominio, la recta que determina la ecuación <math>x = c</math>, es decir, todo punto de la forma <math>(c,t) \forall t \in \mathbb R</math>, se denomina asíntota vertical de la función. Para el ejemplo dado, <math>x=0</math> es la asíntota vertical. | Cuando una función tiende a infinito en un punto determinado ''c'' del dominio, la recta que determina la ecuación <math>x = c</math>, es decir, todo punto de la forma <math>(c,t) \forall t \in \mathbb R</math>, se denomina asíntota vertical de la función. Para el ejemplo dado, <math>x=0</math> es la asíntota vertical. | ||
- | El hecho de que <math>\lim_{x\to 0}\frac{1}{x}=\infty</math> no implica que sea posible la [[división por cero]]. Según la definición de este límite, <math>0<|x|<\delta\Rightarrow x\ne0</math>, con lo cual, <math>\frac{1}{0}\ne\infty</math>. En definitiva, <math>\not\exists \frac{1}{0}</math> es decir, está expresión es indefinida. | + | El hecho de que <math>\lim_{x\to 0}\frac{1}{x}=\infty</math> no implica que sea posible la división por cero. Según la definición de este límite, <math>0<|x|<\delta\Rightarrow x\ne0</math>, con lo cual, <math>\frac{1}{0}\ne\infty</math>. En definitiva, <math>\not\exists \frac{1}{0}</math> es decir, está expresión es indefinida. |
Tomemos otro ejemplo, la función [[logaritmo natural]]. | Tomemos otro ejemplo, la función [[logaritmo natural]]. |
Revisión de 11:22 23 jun 2017
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Calculadora |
Tabla de contenidos |
Introducción
Recordemos algunos conceptos:
- Decimos que " tiende a por la izquierda" () cuando toma valores menores que , cada vez más próximos a , tan próximos a como se quiera.
- Decimos que " tiende a por la derecha" () cuando toma valores mayores que , cada vez más próximos a , tan próximos a como se quiera.
- Decimos que " tiende a " () cuando toma valores cada vez más próximos a , tan próximos a como se quiera, tanto a su izquierda como a su derecha.
- Decimos que " tiende a + infinito" () cuando toma valores positivos tan grandes como queramos.
- Decimos que " tiende a - infinito" () cuando toma valores negativos tan pequeños como queramos.
- A veces te podrás encontrar también la expresión " tiende a infinito" () cuando tiende, indistintamente, a o a , aunque también hay quien la usa en lugar de .
- Concepto de distancia entre dos puntos.
- Concepto de entorno de un punto.
- Aproximación a un punto por la derecha y por la izquierda.
- Aproximación a y .
En este vídeo, el más importante de todos, hablamos del mágico instante en que tú, el número real "x", por amor, consagras gozosamente tu existencia a la observación y análisis de la Dulcinea "f(x)" que da sentido a tu vida y la llena de alegría y diversión.
Límite de de una función en un punto
El concepto de límite es la base para poder abordar el concepto de continuidad y , más adelante, el de derivabilidad de una función. Es pués, de vital interés, tenerlo bien claro.
Definición informal de límite
De manera informal, diremos que una función "tiene límite" en , o que "tiende a" cuando se acerca a , si se puede hacer que esté tan cerca como queramos de , haciendo que esté suficientemente cerca de , pero sin llegar a .
Definición formal de límite
Los conceptos "cerca" y "suficientemente cerca" son matemáticamente poco precisos. Por esta razón, se da una definición formal de límite que precisa estos conceptos.
Sea una función con dominio y sea un punto de acumulación de . Diremos que el límite de una función , cuando tiende a , es , si y sólo si, para todo , existe un , tal que para todo número real del dominio de la función, si , entonces .
Es decir,
Esta es una formulación estricta del concepto de límite de una función real en un punto de acumulación del dominio de la función y se debe al matemático francés Luis Cauchy.
Definición rigurosa de límite de una función en un punto.
Observaciones:
- Para entender bien el concepto de límite, recuérdese la definición de distancia entre dos puntos de la recta real, según la cual, .
- Decir que es un punto de acumulación del dominio de la función equivale a decir que cualquier intevalo abierto de centro contiene a puntos del dominio de la función distintos de , o dicho informalmente, que nos podemos acercar a tanto como queramos mediante puntos del dominio distintos de .
- Exigir que sea punto de acumulación del dominio es necesario para que la definición tenga sentido. En caso contrario, no podríamos hablar de valores de "suficientemente cerca" de cuyas imágenes están tan "cerca" de como se desee.
- Es muy importante observar que no tiene por qué pertenecer al dominio de la función para poder hablar de límite cuando x tiende a . Es decir, podemos calcular el límite en un punto en el que la función no esté definida.
Límite de una función en un punto
Demostrar que usando la definición formal de límite.
Utilizando la definición, debemos demostrar que para cualquier dado podemos hallar un para el cual se cumpla:
Tomando será posible probar esto. Esto es válido ya que nos permite obtener un valor para cualquier dado, que es precisamente lo que enuncia la definición.
Probaremos entonces la tesis, tomando como hipótesis:
Dado que
y que , por [2]:
queda demostrado [1].
Nótese que bien podríamos haber elegido o , por ejemplo. En tanto , siempre podremos demostrar [1].Teorema
Si el límite de una función existe, entonces es único.
Supóngamos que y también que siendo .
Tomemos un entorno de centro y otro de centro que no se intersequen. Por definición de límite, para todo en algún entorno reducido de , por lo que no puede estar en , lo que impide que el límite sea .El teorema de unicidad provee de una valiosa herramienta para refutar la existencia de límites.
Funciones sin límite en un punto
Función sin límite
La función de Dirichlet, definida como:
tiene la peculiaridad de que, para cualquier valor de su dominio, el no existe.
Para demostrar la anterior afirmación, es necesario hacer uso del hecho de que cualquier intervalo contiene tanto números racionales como irracionales.
Sólo tiene sentido calcular los límites laterales de una función en un punto cuando la función está definida en las "proximidades" del punto.
Límites laterales
Dicho de otro modo, si los límites laterales no son iguales, entonces el límite no existe. El hecho de que el límite no sea el mismo en todo entorno del punto implica que no es único, por esta razón es que no existe. |
En este vídeo hablamos de los dos límites laterales de una función "f" en un punto "a" (límite de "f" en "a" por la izquierda y límite de "f" en "a" por la derecha), interpretándolos en términos geométricos. Si dichos dos límites laterales de "f" en "a" son iguales a "L", se dice que "L" es el límite de "f" en "a".
- Conceptos de límite de una función por la derecha y por la izquierda de un punto.
- Concepto de límite de una función en un punto.
- Se puede calcular el límite en un punto independientemente de que el punto pertenezca o no al dominio de la función. Ejemplos.
Límites infinitos
Existen varios casos de límites de funciones que involucran la noción del infinito, definiremos cada uno de ellos en las secciones siguientes.
Variable que tiende a infinito
Límite en el infinito:
- .
- .
- .
Ejemplo
Comprueba que la función , definida , tiende a cero cuando tiende a infinito.
Hay que probar:
Dado que R es arbitrario por definición, conviene tomarlo en función de de esta manera
De este modo, hay dos casos a considerar:
- en cuyo caso, cualquier R sirve, pues f está acotada por 1. En particular se escogió arbitrariamente un R = 1.
- se elige R en función de ε.
El primer caso queda automáticamente demostrado por la definición de función acotada, pues basta deducir el caso particular.
Para el segundo caso, debemos demostrar la implicación (**).
(**)
siempre que , pues de lo contrario se toma R = 1.
Partimos de .
Como f es una función estrictamente positiva vale que f(x) = | f(x) | , por lo tanto queda demostrada (**).
Como , la ecuación y = 0 determina la asíntota horizontal de la función.Función que tiende a infinito
Límite infinito:
- .
- .
- .
Ejemplo
Considera la función racional , cuya gráfica en el plano es una hipérbola equilátera centrada en el origen de coordenadas. Tomando muy cercano a cero, la función toma valores muy grandes, por eso se dice que tiende a infinito cuando tiende a cero. Vamos a comprobarlo haciendo uso de la definición.
{{{sol}}}
Cuando una función tiende a infinito en un punto determinado c del dominio, la recta que determina la ecuación x = c, es decir, todo punto de la forma , se denomina asíntota vertical de la función. Para el ejemplo dado, x = 0 es la asíntota vertical.
El hecho de que no implica que sea posible la división por cero. Según la definición de este límite, , con lo cual, . En definitiva, es decir, está expresión es indefinida.
Tomemos otro ejemplo, la función logaritmo natural.
Recurrimos al límite lateral ya que el logaritmo sólo está definido para x > 0 en los reales. Plantilla:Demostración Esta función tiene una asíntota vertical x = 0, igual que la anterior.
Ambos casos
thumb|A medida que tomamos M cada vez más grande, podemos establecer R de modo que f supere a M en valor absoluto cuando lo hace x, con respecto a R. Pueden darse ambos casos al mismo tiempo, por ejemplo, cualquier función polinómica de x tiende a infinito, cuando x tiende a infinito. En este tipo de casos definiremos al límite como sigue. Plantilla:Definición Tomemos como ejemplo a la función afín f(x) = 3x − 5, que es un caso particular de función polinómica. Siendo su gráfica una recta, intuitivamente podemos imaginar que tomando puntos de x «muy grandes» o «muy pequeños» los valores de f(x), es decir, la «altura», se hace muy grande o pequeña con respecto a x. Plantilla:Demostración
En este vídeo hablamos del límite de la función "f" cuando x → +∞; ya sea dicho límite finito, +∞ ó -∞. También hablamos del límite de "f" cuando x → -∞; ya sea dicho límite finito, +∞ ó -∞.
Definición rigurosa de límite de una función cuando x tiende a (+/-) infinito.
4 ejemplos muy sencillos.