Números complejos: Forma polar (1ºBach)
De Wikipedia
Revisión de 12:34 13 jun 2017 Coordinador (Discusión | contribuciones) (→Forma trigonométrica de un número complejo) ← Ir a diferencia anterior |
Revisión de 15:27 24 jun 2017 Coordinador (Discusión | contribuciones) (→Forma trigonométrica de un número complejo) Ir a siguiente diferencia → |
||
Línea 184: | Línea 184: | ||
|titulo1=Tutorial | |titulo1=Tutorial | ||
|duracion=11´22" | |duracion=11´22" | ||
- | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/07-formas-polar-y-trigonometrica-de-un-numero-complejo#.VCryRRa7ZV8 | + | |url1=https://www.youtube.com/watch?v=BYOUqBDau1c&list=PLB2E59B57C33C7B8D&index=17 |
|sinopsis=Videotutorial. | |sinopsis=Videotutorial. | ||
}} | }} | ||
Línea 197: | Línea 197: | ||
|titulo1=Ejercicio 2 | |titulo1=Ejercicio 2 | ||
|duracion=7´00" | |duracion=7´00" | ||
- | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/0702-cuatro-ejercicios-2#.VCrzBha7ZV8 | + | |url1=https://www.youtube.com/watch?v=7agSOtjzFvQ&list=PLB2E59B57C33C7B8D&index=18 |
|sinopsis=4 ejercicios | |sinopsis=4 ejercicios | ||
}} | }} | ||
Línea 203: | Línea 203: | ||
|titulo1=Ejercicio 3 | |titulo1=Ejercicio 3 | ||
|duracion=10´37" | |duracion=10´37" | ||
- | |url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/12-numeros-complejos/0703-nueve-ejercicios#.VCrzLxa7ZV8 | + | |url1=https://www.youtube.com/watch?v=d2qfqSWpPXg&list=PLB2E59B57C33C7B8D&index=25 |
|sinopsis=9 ejercicios. | |sinopsis=9 ejercicios. | ||
}} | }} |
Revisión de 15:27 24 jun 2017
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 152)
Forma polar de un número complejo
Dado un número complejo
La forma polar del número complejo , se designa , siendo y . (El cero, al no tener argumento, no se puede poner en forma polar) |
En esta escena podrás ver como se representan los números complejos en forma polar. Mueve el deslizador para ver algunos ejemplos y completa los que faltan en tu cuaderno.
Paso de forma binómica a polar
Procedimiento
Dado un número complejo su forma polar se obtiene de la siguiente manera:
|
Ejemplo: Paso de forma binómica a polar
Pasa a forma polar:
- a)
- b)
- c)
a)
Calculamos el módulo:
Calculamos el argumento:
Solución:
b)
Solución:
c)
Solución:Pasa los siguientes números complejos a forma polar y comprueba tus resultados en la escena:
- a) b) c) d)
En esta escena puedes pasar un complejo de forma binómica a polar. Puedes variar los valores de a y b o mover el afijo con el ratón.
Actividad: Paso de forma binómica a polar a) Pasa a forma polar. b) Halla el argumento de . b) Halla el módulo de . Solución: Para averiguar las soluciones debes escribir donde pone "Escribe tu consulta" las siguientes expresiones: a) convert 1-i to polar form b) arg (1-i) in degrees o arg (1-i) c) | 1 − i | |
(Pág. 153)
Paso de forma polar a binómica
Ejemplo: Paso de forma polar a binómica
Pasa a forma binómica el número complejo
Calculamos la parte real:
Calculamos su parte imaginaria:
Pasa los siguientes números complejos a forma binómica y comprueba tus resultados en esta escena:
- a) b) c) d) e) f)
En esta escena puedes pasar un complejo de forma polar a binómica. Puedes variar los valores del módulo y del argumento.
Forma trigonométrica de un número complejo
Según lo visto en el apartado anterior:
Se llama forma trigonométrica de un número complejo, a la expresión
|
Ejemplo: Forma trigonométrica de un complejo
Pasa a forma trigonométrica el número complejo
Tan sólo hay que aplicar la fórmula:
Videotutorial.
4 ejercicios.
4 ejercicios
9 ejercicios.
Familias de complejos en forma polar
Ejercicio resuelto: Familias de complejos en forma polar
Representa los siguientes conjuntos de números complejos:
- a)
- b)
- c)
- d)
Como , los tres primeros apartados se resuelven de la siguiente manera:
- a) Representando la curva se obtiene una circunferncia de centro O y radio 3.
- b) Representando la curva se obtiene un círculo de centro O y radio 3sin la circunferencia del borde.
- c) Representando la curva se obtiene una corona circular de radios 1 y 3 y centro O, incluidas las circunferencias de los bordes.
Como :
- d) Representando la recta con se obtiene una semirrecta abierta de origen O que forma un ángulo de 30º con el eje X.
En esta escena de Geogebra podrás ver como se representan gráficamente las soluciones.
Ejercicios
Ejercicios propuestos
Ejercicios propuestos: Forma polar de un número complejo |