Ángulos en la circunferencia (1º ESO)
De Wikipedia
| Revisión de 07:19 3 jul 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión actual Coordinador (Discusión | contribuciones) (→Actividades y videotutoriales) |
||
| Línea 5: | Línea 5: | ||
| |enlaces= | |enlaces= | ||
| }} | }} | ||
| + | ==Ángulo central== | ||
| + | {{Ángulo central}} | ||
| + | |||
| + | ==Ángulo inscrito== | ||
| + | {{Ángulo inscrito}} | ||
| + | |||
| + | ==Actividades y videotutoriales== | ||
| + | {{Actividades y videotutoriales: Ángulos}} | ||
| [[Categoría: Matemáticas]][[Categoría: Geometría]] | [[Categoría: Matemáticas]][[Categoría: Geometría]] | ||
Revisión actual
| Enlaces internos | Para repasar | Para ampliar | Enlaces externos |
| Indice Descartes Manual Casio | WIRIS Geogebra Calculadora |
Tabla de contenidos |
Ángulo central
En esta actividad podrás ver cómo es un ángulo central y el arco de circunferencia que determina.
Ángulo inscrito
Propiedades
Propiedades
- Dos ángulos inscritos en una circunferencia, que abarcan el mismo arco son iguales.
- La medida de un ángulo inscrito en una circunferencia es la mitad del arco que abarca, es decir, la mitad del ángulo central correspondiente.
- Todo ángulo inscrito en una semicircunferencia es recto.
Las dos primeras propiedades se pueden comprobar (no es una demostración) en la siguiente escena:
En esta escena podrás comprobar la relación que hay entre ángulos centrales y ángulos inscritos en una circunferencia.
La tercera propiedad la puedes comprobar en esta otra escena:
En esta escena podrás comprobar qué propiedad tienen todos los ángulos inscritos en una semicircunferencia.
En esta actividad podrás ver cómo es un ángulo inscrito y su relación con el ángulo central correspondiente.
En esta actividad podrás ver cómo un ángulo inscrito en una semicircunferencia es recto.
Actividades y videotutoriales
Ángulos centrales e incritos. Propiedad.
Aplicación de las propiedades de los ángulos inscritos a problemas de cuerdas que se cortan en una circunferencia.
Aplicación de las propiedades de los ángulos inscritos a problemas de cuerdas que se cortan en una circunferencia.
Ejercicios de autoevaluación sobre ángulos centrales e inscritos.
Ángulos en una circunferencia: Interior, central, inscrito, semiinscrito, interior y circunscrito.
En esta escena podrás ver los distintos tipos de ángulos que puede haber en una circunferencia: central, inscrito, semiinscrito, circunscrito, interior, exterior.
En esta escena podrás practicar el cálculo del valor de distintos tipos de ángulos en una circunferencia.
y su arco correspondiente AB.
.

