Figuras semejantes (2º ESO)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:52 16 sep 2017
Coordinador (Discusión | contribuciones)
(Ejercicios propuestos)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Relación entre las áreas y los volúmenes de dos figuras semejantes)
Línea 9: Línea 9:
(Pág. 194) (Pág. 194)
==Figuras semejantes== ==Figuras semejantes==
-{{Caja_Amarilla|texto=*Dos figuras son '''semejantes''' si tienen la misma forma aunque sus tamaños u orientación sean diferentes.+{{Definición: Figuras semejantes}}
-*El tener la misma forma lo expresaremos matemáticamente diciendo que los segmentos correspondientes de una y otra figura son proporcionales, es decir, la longitud de uno de ellos se obtiene multiplicando la longitud del correspondiente por una cantidad fija, llamada '''razón de semejanza'''.+
-}}+
-{{p}}+
-{{Teorema_sin_demo|titulo=Propiedades|enunciado=En dos figuras semejantes se cumple:+
-*Un ángulo en una de las figuras es igual que el ángulo correspondiente en la otra figura.+
-*Una razón en una de las figuras es igual a la razón correspondiente en la otra figura.+
-}}+
-{{p}}+
-{{Ejemplo_simple|titulo=Ejemplo|contenido=+
-}}+
{{p}} {{p}}
===Ejercicios propuestos=== ===Ejercicios propuestos===
Línea 31: Línea 21:
}} }}
{{p}} {{p}}
 +(Pág. 196)
 +
 +==Relación entre las áreas y los volúmenes de dos figuras semejantes==
 +{{Relación entre las áreas y los volúmenes de dos figuras semejantes}}
 +{{p}}
 +===Ejercicios propuestos===
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Relación entre las áreas y los volúmenes de dos figuras semejantes''
 +|cuerpo=
 +(Pág. 196-197)
 +
 +[[Imagen:red_star.png|12px]] 3, 4
 +
 +[[Imagen:yellow_star.png|12px]] 5
 +}}
 +==Polígonos semejantes==
 +{{Polígonos semejantes}}
 +{{p}}
 +
[[Categoría: Matemáticas]][[Categoría: Geometría]] [[Categoría: Matemáticas]][[Categoría: Geometría]]

Revisión actual

Tabla de contenidos

(Pág. 194)

Figuras semejantes

  • Dos figuras son semejantes si tienen la misma forma aunque sus tamaños u orientación sean diferentes. Esto lo expresaremos matemáticamente diciendo que:
    • Los segmentos correspondientes (homólogos) son proporcionales.
    • Sus ángulos correspondientes (homólogos) son iguales.
  • Al ser los segmentos homólogos proporcionales, se cumple que la longitud de uno de ellos se obtiene multiplicando la longitud del correspondiente por una cantidad fija, llamada razón de semejanza.

(*) Dos elementos de dos figuras son homólogos si ocupan el mismo lugar en ambas figuras.

ejercicio

Ejemplos: Figuras semejantes


  1. Tenemos dibujado en un papel un rectángulo de dimensiones 12 cm x 8 cm. Hacemos una fotocopia reducida y obtenemos otro rectángulo de dimensiones 3 cm x 2 cm. Comprueba que son semejantes y calcula la razón de semejanza. Calcula el procentaje de reducción aplicado en la fotocopia.
  2. Dos triángulos semejantes tienen una razón de semejanza de 0.75. Si los lados del mayor miden 12, 8 y 16 cm, respectivamente, ¿cuánto miden los lados del menor?

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Figuras semejantes


(Pág. 195)

1, 2

(Pág. 196)

Relación entre las áreas y los volúmenes de dos figuras semejantes

ejercicio

Propiedades


Si dos figuras son semejantes y k es la constante de proporcionalidad, entonces:

  • La razón entre sus áreas es k2.
  • La razón entre sus volúmenes k3.

ejercicio

Ejemplos: Relación entre las áreas y los volúmenes de dos figuras semejantes


  1. Comprueba que si un cuadrado tiene 5 cm de lado y el de otro cuadrado mide el doble, 10 cm, entonces el área de éste es el cuádruple de la del primero.
  2. Comprueba que si un cubo tiene 5 cm de arista y la de otro cubo mide el doble, 10 cm, entonces el volumen de éste es 8 veces la del primero.

ejercicio

Ejercicio: Relación entre las áreas de dos figuras semejantes


En una pizzería, la pizza pequeña tiene 23 cm de diámetro y es para una persona. Sin embargo, la pizza familiar tiene 46 cm de diámetro, justo el doble que la pequeña, pero dicen que es para 4 personas. ¿Nos están engañando?


La respuesta en la siguiente actividad:

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Relación entre las áreas y los volúmenes de dos figuras semejantes


(Pág. 196-197)

3, 4

5

Polígonos semejantes

Dos polígonos son semejantes si cumplen que sus ángulos homólogos son iguales y sus lados homólogos son proporcionales.

ejercicio

Propiedades


Si dos polígonos son semejantes y k es la constante de proporcionalidad, entonces:

  • La razón entre sus perímetros también es k.
  • La razón entre sus áreas es k2.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda