Plantilla:Números primos entre sí
De Wikipedia
(Diferencia entre revisiones)
Revisión de 11:12 9 ago 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 18:34 9 oct 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 6: | Línea 6: | ||
{{p}} | {{p}} | ||
{{Videotutoriales|titulo=Números primos entre sí|enunciado= | {{Videotutoriales|titulo=Números primos entre sí|enunciado= | ||
+ | {{Video_enlace_angelmartinez | ||
+ | |titulo1=Tutorial | ||
+ | |duracion=0´44" | ||
+ | |url1=https://www.youtube.com/watch?v=Ae-24ePeAoA | ||
+ | |sinopsis=¿Cuándo son dos números primos entre sí?. Ejemplo. | ||
+ | }} | ||
+ | ---- | ||
{{Video_enlace_childtopia | {{Video_enlace_childtopia | ||
|titulo1=Ejercicio 1 | |titulo1=Ejercicio 1 |
Revisión de 18:34 9 oct 2017
Dos números son primos entre sí, si su m.c.d. es 1, es decir, no tienen divisores comunes salvo la unidad.

¿Cuándo son dos números primos entre sí?. Ejemplo.

Comprueba si los números 3 y 7 son o no primos entre sí.

Comprueba si los números 11 y 22 son o no primos entre sí.

Comprueba si los números 9 y 48 son o no primos entre sí.

Comprueba si los números 45 y 34 son o no primos entre sí.
Propiedades
- Si a y b son primos entre sí, entonces m.c.m.(a,b)=a · b.
- Si se dividen varios números por su m.c.d., los cocientes resultantes son primos entre sí.