Plantilla:Relación de proporcionalidad inversa 1ºESO
De Wikipedia
(Diferencia entre revisiones)
Revisión de 12:32 21 nov 2017 Coordinador (Discusión | contribuciones) ← Ir a diferencia anterior |
Revisión de 12:38 21 nov 2017 Coordinador (Discusión | contribuciones) Ir a siguiente diferencia → |
||
Línea 1: | Línea 1: | ||
{{Caja_Amarilla|texto=Dos [[El Sistema Métrico Decimal (1º ESO)|magnitudes]] son '''inversamente proporcionales''' cuando al multiplicar (resp. dividir) una de ellas por un número distinto de cero, la otra queda dividida (resp. multiplicada) por el mismo número. | {{Caja_Amarilla|texto=Dos [[El Sistema Métrico Decimal (1º ESO)|magnitudes]] son '''inversamente proporcionales''' cuando al multiplicar (resp. dividir) una de ellas por un número distinto de cero, la otra queda dividida (resp. multiplicada) por el mismo número. | ||
+ | }} | ||
+ | {{p}} | ||
+ | {{Warning|titulo=Advertencia|texto=Es muy común pensar que dos magnitudes son directamente proporcionales si al aumentar (resp. disminuir) una de ellas, aumenta (resp. disminuye) la otra. No es exactamente así. No es suficiente con que aumente (resp. disminuya) la otra magnitud, tiene que hacerlo de una forma muy concreta: Si multiplicamos (resp. dividimos) una, multiplicamos (resp. dividimos) la otra. | ||
}} | }} | ||
{{p}} | {{p}} |
Revisión de 12:38 21 nov 2017
Dos magnitudes son inversamente proporcionales cuando al multiplicar (resp. dividir) una de ellas por un número distinto de cero, la otra queda dividida (resp. multiplicada) por el mismo número.
Constante de proporcionalidad inversa
Propiedad
Al multiplicar dos magnitudes inversamente proporcinales siempre se obtiene el mismo valor. A dicho valor se le denomina constante de proporcionalidad inversa.