Resolución de triángulos cualesquiera (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 13:23 30 nov 2017
Coordinador (Discusión | contribuciones)
(Teorema de los senos)
← Ir a diferencia anterior
Revisión de 13:25 30 nov 2017
Coordinador (Discusión | contribuciones)
(Teorema de los senos)
Ir a siguiente diferencia →
Línea 20: Línea 20:
}} }}
|demo= |demo=
 +'''Demostración:'''
 +
[[Imagen:terorema senos.png|200px|right|El teorema de los senos establece que ''a/sin(A)'' es constante.]] [[Imagen:terorema senos.png|200px|right|El teorema de los senos establece que ''a/sin(A)'' es constante.]]
Dado el triángulo '''ABC''', denotamos por '''O''' su circuncentro y dibujamos su circunferencia circunscrita. Prolongando el segmento <math>\overline{BO}</math> hasta cortar la circunferencia, se obtiene un diámetro <math>\overline{BP}</math>. Dado el triángulo '''ABC''', denotamos por '''O''' su circuncentro y dibujamos su circunferencia circunscrita. Prolongando el segmento <math>\overline{BO}</math> hasta cortar la circunferencia, se obtiene un diámetro <math>\overline{BP}</math>.
-Ahora, el triángulo '''PBC''' es recto, puesto que <math>\overline{BP}</math> es un diámetro, y además los ángulos <math>\hat A</math> y <math>\hat P</math> son iguales, porque ambos son ángulos inscritos que abarcan el mismo arco <math>\widehat{BC}</math>. Por la definición de seno, se tiene+Ahora, el triángulo '''PBC''' es recto, puesto que <math>\overline{BP}</math> es un diámetro, y además los ángulos <math>\hat A</math> y <math>\hat P</math> son iguales, porque ambos son ángulos inscritos que abarcan el mismo arco, <math>\widehat{BC}</math>. Por la definición de seno, se tiene que
<center><math>sen \, \hat A=sen \, \hat P=\cfrac{\overline{BC}}{\overline{BP}} = \cfrac{a}{2R}</math></center> <center><math>sen \, \hat A=sen \, \hat P=\cfrac{\overline{BC}}{\overline{BP}} = \cfrac{a}{2R}</math></center>

Revisión de 13:25 30 nov 2017

Tabla de contenidos

(Pág. 116)

Teorema de los senos

ejercicio

Teorema de los senos


En un triángulo cualquiera se cumplen las siguientes igualdades:

\cfrac{a}{sen \, \hat A}=\cfrac{b}{sen \, \hat B}=\cfrac{c}{sen \, \hat C}


Además, todos estos cocientes son iguales a 2R\,, donde R\, es el radio de la circunferencia circunscrita al triángulo.

ejercicio

Ejemplo: Teorema de los senos


Resuelve el triángulo del que se conocen los siguientes datos:

a = 6 \, m \, , \, \hat B = 45^\circ \, , \, \hat C = 105^\circ

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema de los senos


(Pág. 117)

5, 6

(Pág. 118)

Teorema del coseno

ejercicio

Teorema del coseno


En un triángulo cualquiera se cumplen la siguiente relación:

c^2=a^2+b^2-2ab \, cos \, \hat C

Analogamente:

b^2=a^2+c^2-2ac \, cos \, \hat B

a^2=b^2+c^2-2bc \, cos \, \hat A

ejercicio

Ejemplo: Teorema del coseno


Las diagonales de un paralelogramo miden 10 cm y 12 cm, y el ángulo que forman es de 48° 15'. Calcular los lados.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema del coseno


(Pág. 119)

8a,b,d,g; 9

8c,e,f,h

Ejercicios

Ejercicios y videotutoriales

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda