Resolución de triángulos cualesquiera (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:48 9 dic 2017
Coordinador (Discusión | contribuciones)
(Teorema del coseno)
← Ir a diferencia anterior
Revisión de 18:01 9 dic 2017
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 338: Línea 338:
}} }}
-==Ejercicios==+==Ejercicios y videotutoriales==
 +{{Web_enlace
 +|descripcion=Resolución de triángulos. Ejemplos.
 +|enlace=[http://quiz.uprm.edu/tutorials_master/triangulo_prob/triangulo_prob.html Resolución de triángulos]
 +}}
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=Problema resuelto sobre cómo calcular la distancia entre dos puntos inaccesibles. Se usará el teorema de los senos y el del coseno. |descripcion=Problema resuelto sobre cómo calcular la distancia entre dos puntos inaccesibles. Se usará el teorema de los senos y el del coseno.
|enlace=[http://ggbm.at/zznBAvac Cálculo de la distancia entre dos puntos inaccesibles] |enlace=[http://ggbm.at/zznBAvac Cálculo de la distancia entre dos puntos inaccesibles]
}} }}
-==Ejercicios y videotutoriales== 
{{Videotutoriales|titulo=Resolución de triángulos cualesquiera|enunciado= {{Videotutoriales|titulo=Resolución de triángulos cualesquiera|enunciado=
{{Video_enlace_fonemato {{Video_enlace_fonemato

Revisión de 18:01 9 dic 2017

Tabla de contenidos

(Pág. 116)

Teorema de los senos

ejercicio

Teorema de los senos


En un triángulo cualquiera se cumplen las siguientes igualdades:

\cfrac{a}{sen \, \hat A}=\cfrac{b}{sen \, \hat B}=\cfrac{c}{sen \, \hat C}


Además, todos estos cocientes son iguales a 2R\,, donde R\, es el radio de la circunferencia circunscrita al triángulo.

ejercicio

Ejemplo: Teorema de los senos


Resuelve el triángulo del que se conocen los siguientes datos:

a = 6 \, m \, , \, \hat B = 45^\circ \, , \, \hat C = 105^\circ

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema de los senos


(Pág. 117)

5, 6

(Pág. 118)

Teorema del coseno

ejercicio

Teorema del coseno


En un triángulo cualquiera se cumplen la siguiente relación:

c^2=a^2+b^2-2ab \, cos \, \hat C

Analogamente:

b^2=a^2+c^2-2ac \, cos \, \hat B

a^2=b^2+c^2-2bc \, cos \, \hat A

ejercicio

Ejemplo: Teorema del coseno


Las diagonales de un paralelogramo miden 10 cm y 12 cm, y el ángulo que forman es de 48° 15'. Calcular los lados.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema del coseno


(Pág. 119)

8a,b,d,g; 9

8c,e,f,h

Ejercicios y videotutoriales

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda