Fórmulas trigonométricas (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 07:58 11 dic 2017
Coordinador (Discusión | contribuciones)
(Razones trigonométricas de la diferencia de dos ángulos)
← Ir a diferencia anterior
Revisión de 08:11 11 dic 2017
Coordinador (Discusión | contribuciones)
(Razones trigonométricas del ángulo mitad)
Ir a siguiente diferencia →
Línea 265: Línea 265:
De estas igualdades se despejan <math>cos \, \cfrac{\alpha}{2}</math> y <math>sen \, \cfrac{\alpha}{2}</math>, y a partir de ellos, se obtiene el valor de <math>tg \, \cfrac{\alpha}{2}</math>. De estas igualdades se despejan <math>cos \, \cfrac{\alpha}{2}</math> y <math>sen \, \cfrac{\alpha}{2}</math>, y a partir de ellos, se obtiene el valor de <math>tg \, \cfrac{\alpha}{2}</math>.
-}} 
-{{p}} 
-{{Videotutoriales|titulo=Razones trigonométricas del ángulo mitad|enunciado= 
-{{Video_enlace_matemovil 
-|titulo1=Ejercicio 1 
-|duracion=14´29" 
-|url1=https://www.youtube.com/watch?v=lIpmDO_pdBg&list=PL3KGq8pH1bFTdb47fYhuokXPlQKsEeT33&index=47 
-|sinopsis=Ejercicios. 
-}} 
-{{Video_enlace_matemovil 
-|titulo1=Ejercicio 2 
-|duracion=8´59" 
-|url1=https://www.youtube.com/watch?v=C-60bamV32A&list=PL3KGq8pH1bFTdb47fYhuokXPlQKsEeT33&index=45 
-|sinopsis=Ejercicio. 
-}} 
}} }}
{{p}} {{p}}
Línea 290: Línea 275:
}} }}
---- ----
 +'''Razones trigonométricas del ángulo doble:'''
 +
{{Video_enlace_abel {{Video_enlace_abel
|titulo1=Seno del ángulo doble |titulo1=Seno del ángulo doble
Línea 309: Línea 296:
}} }}
---- ----
 +'''Razones trigonométricas del ángulo mitad:'''
 +
{{Video_enlace_abel {{Video_enlace_abel
|titulo1=Seno del ángulo mitad |titulo1=Seno del ángulo mitad
Línea 326: Línea 315:
|url1=https://www.youtube.com/watch?v=OOFahCF09RU |url1=https://www.youtube.com/watch?v=OOFahCF09RU
|sinopsis=Demostración de la fórmula de la tangente del ángulo mitad. |sinopsis=Demostración de la fórmula de la tangente del ángulo mitad.
 +}}
 +----
 +{{Video_enlace_matemovil
 +|titulo1=Ejercicio 1
 +|duracion=14´29"
 +|url1=https://www.youtube.com/watch?v=lIpmDO_pdBg&list=PL3KGq8pH1bFTdb47fYhuokXPlQKsEeT33&index=47
 +|sinopsis=
 +:a) Demostrar que <math>tg\,\cfrac{x}{2}=cosec\,x-cotg\,x</math>.
 +
 +:b) Demostrar que <math>cotg\,\cfrac{x}{2}=cosec\,x+cotg\,x</math>. (este ejercicio queda propuesto pero no resuelto)
 +
 +:c) Apoyándote en los apartados anteriores, simplifica <math>M=\cfrac{cotg\, \cfrac{x}{2}-2\,cotg\,x}{tg\, \cfrac{x}{2}+cotg\,x}+cos\,x</math>
 +}}
 +{{Video_enlace_matemovil
 +|titulo1=Ejercicio 2
 +|duracion=8´59"
 +|url1=https://www.youtube.com/watch?v=C-60bamV32A&list=PL3KGq8pH1bFTdb47fYhuokXPlQKsEeT33&index=45
 +|sinopsis=Reduce <math>(cos\,a-cos\,b)^2+(sen\,a-sen\,b)^2</math> en función de <math>\cfrac{a-b}{2}</math>.
}} }}
}} }}
Línea 337: Línea 344:
}} }}
{{p}} {{p}}
 +
==Razones trigonométricas del ángulo triple== ==Razones trigonométricas del ángulo triple==
{{Videotutoriales|titulo=Razones trigonométricas del ángulo triple|enunciado= {{Videotutoriales|titulo=Razones trigonométricas del ángulo triple|enunciado=

Revisión de 08:11 11 dic 2017

Tabla de contenidos

Razones trigonométricas de la suma de dos ángulos

ejercicio

Razones trigonométricas de la suma de dos ángulos


I.1:    sen \, (\alpha + \beta) = sen \, \alpha \cdot cos \, \beta + cos \, \alpha \cdot sen \, \beta

I.2:    cos \, (\alpha + \beta) = cos \, \alpha \cdot cos \, \beta - sen \, \alpha \cdot sen \, \beta

I.3:    tg \, (\alpha + \beta) = \frac{tg \, \alpha + tg \, \beta}{1 - tg \, \alpha \cdot tg \, \beta}

ejercicio

Ejemplo: Razones trigonométricas de la suma de dos ángulos


Calcula el valor exacto de sen \, 75^\circ \, (sin calculadora)

Razones trigonométricas de la diferencia de dos ángulos

ejercicio

Razones trigonométricas de la diferencia de dos ángulos


II.1:    sen \, (\alpha - \beta) = sen \, \alpha \cdot cos \, \beta - cos \, \alpha \cdot sen \, \beta

II.2:    cos \, (\alpha - \beta) = cos \, \alpha \cdot cos \, \beta + sen \, \alpha \cdot sen \, \beta

II.3:    tg \, (\alpha - \beta) = \frac{tg \, \alpha - tg \, \beta}{1 + tg \, \alpha \cdot tg \, \beta}

ejercicio

Ejemplo: Razones trigonométricas de la diferencia de dos ángulos


Calcula el valor exacto de sen \, 15^\circ (sin calculadora)

Razones trigonométricas del ángulo doble

ejercicio

Razones trigonométricas del ángulo doble


III.1:    sen \, (2 \, \alpha) = 2 \, sen \, \alpha \cdot cos \, \alpha

III.2:    cos \, (2 \, \alpha) = cos^2 \, \alpha - sen^2 \, \alpha

III.3:    tg \, (2 \, \alpha) = \frac{2 \, tg \, \alpha}{1 - tg^2 \, \alpha}

ejercicio

Ejemplo: Razones trigonométricas del ángulo doble


Calcula el valor de cos \, 120^\circ \, a partir de las razones trigonométricas de 60º.

Razones trigonométricas del ángulo mitad

ejercicio

Razones trigonométricas del ángulo mitad


IV.1:    sen \, \Big( \cfrac{\alpha}{2} \Big) = \pm \sqrt{\cfrac{1-cos \, \alpha}{2}}

IV.2:    cos \, \Big( \cfrac{\alpha}{2} \Big) = \pm \sqrt{\cfrac{1+cos \, \alpha}{2}}

IV.3:    tg \, \Big( \cfrac{\alpha}{2} \Big) = \pm \sqrt{\cfrac{1-cos \, \alpha}{1+cos \, \alpha}}

ejercicio

Ejemplo: Razones trigonométricas del ángulo mitad


Calcula el valor exacto de tg \, 22^\circ \, 30' (sin calculadora).

Razones trigonométricas del ángulo triple

Transformaciones de sumas y diferencias de senos y cosenos en productos

ejercicio

Transformaciones de sumas en productos


V.1:    sen \, A + sen \, B = 2 \, sen \, \cfrac{A+B}{2} \cdot cos \, \cfrac{A-B}{2}

V.2:    sen \, A - sen \, B = 2 \, cos \, \cfrac{A+B}{2} \cdot sen \, \cfrac{A-B}{2}

V.3:    cos \, A + cos \, B = 2 \, cos \, \cfrac{A+B}{2} \cdot cos \, \cfrac{A-B}{2}

V.4:    cos \, A - cos \, B = -2 \, sen \, \cfrac{A+B}{2} \cdot sen \, \cfrac{A-B}{2}

ejercicio

Ejemplo: Transformaciones de sumas en productos


Transforma en producto y calcula: sen \, 75^\circ -sen \, 15^\circ.

Ejercicios

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Fórmulas trigonométricas


(Pág. 130-133)

5, 7, 9, 11, 14, 15, 17b,c, 18

1, 2, 3, 4, 6, 8, 12, 13

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda