Funciones trigonométricas o circulares (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 20:17 17 dic 2017
Coordinador (Discusión | contribuciones)
(Actividades y videotutoriales)
← Ir a diferencia anterior
Revisión de 20:22 17 dic 2017
Coordinador (Discusión | contribuciones)
(Transformaciones de las funciones trigonométricas)
Ir a siguiente diferencia →
Línea 288: Línea 288:
2) <math>f(x)=3\,sen(\cfrac{x}{2})\;</math> 2) <math>f(x)=3\,sen(\cfrac{x}{2})\;</math>
|url1=https://www.youtube.com/watch?v=PIFBQhc0ebQ |url1=https://www.youtube.com/watch?v=PIFBQhc0ebQ
 +}}
 +}}
 +{{Videotutoriales|titulo=Ejercicios|enunciado=
 +{{Video_enlace_khan
 +|titulo1=Ejercicio 1
 +|duracion=12'54"
 +|sinopsis=Representa la función: <math>y=2\,sen(-x)\;</math> en el intervalo <math>\left[ -2\pi, 2\pi \right]</math>.
 +|url1=https://www.youtube.com/watch?v=0q95HWKekqY
 +}}
 +{{Video_enlace_khan
 +|titulo1=Ejercicio 2
 +|duracion=10'44"
 +|sinopsis=Representa la función: <math>y=-2.5\,cos(\cfrac{1}{3}\,x)\;</math> en el intervalo <math>\left[ 0, 6\pi \right]</math>.
 +|url1=https://www.youtube.com/watch?v=h-XNPr9ZIPQ
}} }}
}} }}

Revisión de 20:22 17 dic 2017

Tabla de contenidos

Funciones trigonométricas

Vamos a estudiar las funciones que se obtienen a partir de las razones trigonométricas de un ángulo x al hacer variar éste. Dicho ángulo se suele expresar en radianes.

Función seno

Se define la función seno como

f(x)=sen(x) \, , \ x \in \mathbb{R}

ejercicio

Propiedades de la función seno


  • Dominio: \mathbb{R}
  • Recorrido: [-1, 1]\,
  • Periodicidad: Es periódica, con período 2 \pi \,.
  • Continuidad: Es continua en su dominio, \mathbb{R}.
  • Simetrías: Es impar, pués sen(-x)=-sen(x)\,
  • Cortes con eje X: \left \{ x=0+ \pi k \, , \ k \in \mathbb{Z} \right \}
  • Máximos: \left \{ x=\pi / 2+2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Mínimos: \left \{ x=3 \pi /2 +2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Crecimiento:
    • Crece en \big( 3 \pi / 2+2 \pi (k-1) , \, \pi /2 +2 \pi k \big), \ k \in \mathbb{Z}.
    • Decrece en \big( \pi / 2+2 \pi k , \, 3 \pi /2 +2 \pi k \big), \ k \in \mathbb{Z}.
Función seno (sinusoide).


Los valores en el eje x están expresados en radianes

Función coseno

Se define la función coseno como

f(x)=cos(x) \, , \ x \in \mathbb{R}

ejercicio

Propiedades de la función coseno


  • Dominio: \mathbb{R}
  • Recorrido: [-1, 1]\,
  • Periodicidad: Es periódica, con período 2 \pi \,.
  • Continuidad: Es continua en su dominio, \mathbb{R}.
  • Simetrías: Es par, pués cos(-x)=cos(x)\,
  • Cortes con eje X: \left \{ x=\pi /2 + \pi k \, , \ k \in \mathbb{Z} \right \}
  • Máximos: \left \{ x=2 \pi k \, , \ k \in \mathbb{Z} \right \}
  • Mínimos: \left \{ x=\pi (2k+1) \, , \ k \in \mathbb{Z} \right \}
  • Crecimiento:
    • Crece en \big( \pi (2k-1) , \, 2 \pi k \big), \ k \in \mathbb{Z}.
    • Decrece en \big( 2 \pi k , \, \pi (2k+1) \big), \ k \in \mathbb{Z}.
Función coseno (cosinusoide).


Los valores en el eje x están expresados en radianes

Función tangente

Se define la función coseno como

f(x)=tg(x) \, , \quad x \in \mathbb{R}-\left \{ \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}

ejercicio

Propiedades de la función tangente


  • Dominio: \mathbb{R}-\left \{ \pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}
  • Recorrido: \mathbb{R}
  • Periodicidad: Es periódica, con período \pi \,.
  • Continuidad: Es continua en su dominio. Tiene discontinuidades en \left \{ x=\pi /2 + k \pi \, , \ k  \in \mathbb{Z} \right \}
  • Simetrías: Es impar, pués tg(-x)=-tg(x)\,
  • Cortes con eje X: \left \{ x=k \pi , \ k \in \mathbb{Z} \right \}
  • Máximos: No tiene
  • Mínimos: No tiene
  • Crecimiento: Creciente en cada intervalo que compone sus dominio.
Función tangente.


Los valores en el eje x están expresados en radianes

Línea media, amplitud y período de las funciones trigonométricas



Transformaciones de las funciones trigonométricas



Modelando con funciones trigonométricas



Actividades y videotutoriales



Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda