Funciones arco (1ºBach)
De Wikipedia
(Diferencia entre revisiones)
Revisión de 20:30 13 dic 2016 Coordinador (Discusión | contribuciones) (→Función arcotangente) ← Ir a diferencia anterior |
Revisión de 10:12 18 dic 2017 Coordinador (Discusión | contribuciones) (→Función arcotangente) Ir a siguiente diferencia → |
||
Línea 99: | Línea 99: | ||
}} | }} | ||
{{p}} | {{p}} | ||
+ | ==Actividades y videotutoriales== | ||
+ | {{Videos: Funciones trigonométricas recíprocas o funciones arco}} | ||
{{Geogebra_enlace | {{Geogebra_enlace | ||
|descripcion=En esta escena podrás ver repreentadas conjuntamente las funciones trigonométricas y sus inversas. | |descripcion=En esta escena podrás ver repreentadas conjuntamente las funciones trigonométricas y sus inversas. |
Revisión de 10:12 18 dic 2017
Menú:
Enlaces internos | Para repasar o ampliar | Enlaces externos |
Indice Descartes Manual Casio | WIRIS Geogebra Calculadoras |
Tabla de contenidos |
(Pág. 261)
Función arcoseno
La función seno no es inyectiva, pero si restringimos su dominio al intervalo ![]() La función arcoseno se define como ![]()
donde |
Función arcocoseno
La función coseno no es inyectiva, pero si restringimos su dominio al intervalo ![]() La función arcocoseno se define como ![]()
donde |
Función arcotangente
La función tangente no es inyectiva, pero si restringimos su dominio al intervalo ![]() La función arcotangente se define como ![]()
donde |
Actividades y videotutoriales

Definición, representación y análisis de las funciones arco. Ejercicios.

Ejercicios resueltos sobre funciones arco.

¿A qué intervalo de los dados a continuación se puede restringir la función para que sea invertible?
- a)
- b)
- c)
- d)

Problema resuelto sobre funciones arco.

En esta escena podrás ver repreentadas conjuntamente las funciones trigonométricas y sus inversas.