Vectores: Definición y operaciones (1ºBach)
De Wikipedia
Revisión de 10:37 31 ene 2018 Coordinador (Discusión | contribuciones) (→Vectores) ← Ir a diferencia anterior |
Revisión de 10:38 31 ene 2018 Coordinador (Discusión | contribuciones) (→Vectores opuestos) Ir a siguiente diferencia → |
||
Línea 52: | Línea 52: | ||
{{Tabla75|celda2=<center>'''Vectores opuestos: {{sube|porcentaje=+30%|contenido=<math>\vec{u}=-\vec{v}</math>}}'''<br>[[Imagen:vectores_opuestos.gif|150px]]</center> | {{Tabla75|celda2=<center>'''Vectores opuestos: {{sube|porcentaje=+30%|contenido=<math>\vec{u}=-\vec{v}</math>}}'''<br>[[Imagen:vectores_opuestos.gif|150px]]</center> | ||
|celda1={{Caja_Amarilla|texto= | |celda1={{Caja_Amarilla|texto= | ||
- | Dos vectores, {{sube|porcentaje=+30%|contenido=<math>\vec{u}</math>}} y {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}}, son '''opuestos''' si tienen el mismo módulo, la misma dirección, pero sentidos opuestos. Lo simbolizaremos {{sube|porcentaje=+30%|contenido=<math>\vec{u}=-\vec{v}</math>}}. | + | Dos vectores, {{sube|porcentaje=+30%|contenido=<math>\vec{u}</math>}} y {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}}, son '''opuestos''' si tienen el mismo módulo, la misma dirección, pero sentidos opuestos. Lo simbolizaremos {{sube|porcentaje=+10%|contenido=<math>\vec{u}=-\vec{v}</math>}}. |
}} | }} | ||
}} | }} |
Revisión de 10:38 31 ene 2018
Tabla de contenidos[esconder] |
(Pág. 172)
Vectores
Vectores fijos
Un vector fijo es un segmento orientado que queda determinado por un punto origen, A y otro punto extremo, B. Lo simbolizamos Características de un vector:
|
Vectores equipolentes. Vectores libres
Dos vectores, Dado un vector, existen infinitos vectores equipolentes a él. Cuando queremos hacer uso de un vector podemos elegir uno de esos infinitos vectores iguales a él y utilizarlo como representante del vector. Al conjunto de todos los vectores equipolentes a uno dado se le llama vector libre. Un vector libre lo denotaremos mediante una letra con una flecha: |
Vector nulo
El vector nulo es aquel cuyo origen y extremo coinciden y, por tanto, tiene módulo cero. Lo simbolizaremos .
Vectores opuestos
Dos vectores, |
Operaciones con vectores
Producto de un vector por un número
El producto de un número real
|
Suma y resta de vectores
Suma de vectores:
Dados dos vectores |
Resta de vectores:
Para restar dos vectores |
Método del paralelogramo:
Si consideramos el paralelogramo que resulta de los vectores |
Combinación lineal de vectores
Dados dos vectores En el gráfigo de la derecha tenemos un ejemplo en el que el vector La definición anterior se puede extender a mas de dos vectores, así, por ejemplo, el vector ![]() es combinación lineal de |
Cómo expresar gráficamente un vector como combinación lineal de otros dos
Procedimiento
Para expresar gráficamente el vector como combinación lineal de los vectores
y
- Colocamos los tres vectores partiendo de un mismo punto.
- A continuación, por el extremo de
trazamos paralelas a los otros dos vectores.
- Donde estas paralelas corten a las prolongaciones de los vectores, tenemos los extremos del vector
y
.