Factorización de polinomios (4ºESO Académicas)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 18:25 15 sep 2018
Coordinador (Discusión | contribuciones)
(Raíces enteras de un polinomio)
← Ir a diferencia anterior
Revisión de 18:26 15 sep 2018
Coordinador (Discusión | contribuciones)

Ir a siguiente diferencia →
Línea 6: Línea 6:
}} }}
{{p}} {{p}}
-==Raíces de un polinomio== 
-{{Raíces de un polinomio}} 
-{{p}} 
- 
-==Raíces enteras de un polinomio== 
-Tenemos un polinomio <math>P(x)\,\!</math> con raíces entera y queremos encontrarlas. Para hacerlo tenemos que ir probando a dividirlo por <math>(x-a)\,\!</math>, pero ¿qué valor puede tomar <math>a\,\!</math>? El siguiente resultado nos da la respuesta: 
- 
-{{teorema: raíces enteras de un polinomio}} 
- 
-===Ejercicios propuestos=== 
-{{ejercicio 
-|titulo=Ejercicios propuestos: ''Raíces de un polinomio'' 
-|cuerpo= 
- 
-(Pág. 41) 
- 
-[[Imagen:red_star.png|12px]] 1 al 9 
- 
-}} 
- 
==Factorización de polinomios== ==Factorización de polinomios==
{{Caja_Amarilla|texto='''Factorizar''' un polinomio es descomponerlo en producto de polinomios con el menor grado posible.}} {{Caja_Amarilla|texto='''Factorizar''' un polinomio es descomponerlo en producto de polinomios con el menor grado posible.}}

Revisión de 18:26 15 sep 2018

Tabla de contenidos

Factorización de polinomios

Factorizar un polinomio es descomponerlo en producto de polinomios con el menor grado posible.

Factorización de polinomios de grado 2

ejercicio

Factorización de polinomios de segundo grado


Un polinomio de segundo grado, kx^2+mx+n\;, con raíces rales, a\; y b\;, se puede factorizar de la forma

k(x-a)(x-b)\;

ejercicio

Ejemplos: Factorización de polinomios de segundo grado y reducibles


Factoriza los siguientes polinomios

a) 5x^2+5x-60\;
b) 5x^3+5x^2-60x\;

Procedimientos para la factorización de polinomios de grado mayor que 2

ejercicio

Procedimiento para factorizar polinomios


  • Siempre que se pueda, sacaremos x\; factor común.
  • Mediante la regla de Ruffini podremos buscar las raíces enteras o fraccionarias del polinomio y obtener la factorización.

Un polinomio de grado mayor que 2 no pueda factorizarse usando los procedimientos anteriores, es poco probable que podamos hacerlo con los conocimientos que tenemos.

Factorización de un polinomio mediante la regla de Ruffini

ejercicio

Factorización de un polinomio por Ruffini


Para factorizar un polinomio mediante la regla de Ruffini, aplicaremos ésta sucesivamente, utilizando como candidatos a raíces enteras, los divisores del término independiente y como candidatos a raices fraccionarias, las que resultan de dividir los divisores del término independiente entre los divisores del término de mayor grado.



ejercicio

Ejemplo: Regla de Ruffini


Factoriza el siguiente polinomio:

P(x)=3x^6-3x^5-117x^4+327x^3-210x^2\,\!

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda