Ángulo entre dos rectas del plano (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:06 3 oct 2014
Coordinador (Discusión | contribuciones)
(Videotutoriales)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Ángulo entre dos rectas a partir de sus pendientes)
Línea 5: Línea 5:
|enlaces= |enlaces=
}} }}
 +__TOC__
{{p}} {{p}}
 +(Pág. 202)
==Ángulo entre dos rectas== ==Ángulo entre dos rectas==
{{Caja_Amarilla|texto= {{Caja_Amarilla|texto=
Línea 13: Línea 15:
==Ángulo entre dos rectas a partir de sus vectores de dirección== ==Ángulo entre dos rectas a partir de sus vectores de dirección==
{{Tabla75|celda2=[[Imagen:angrectas.png]]|celda1= {{Tabla75|celda2=[[Imagen:angrectas.png]]|celda1=
-{{Teorema|titulo=Proposición|enunciado=:Dadas dos rectas con vectores de dirección {{sube|porcentaje=+40%|contenido=<math>\overrightarrow{d}</math>}} y {{sube|porcentaje=+40%|contenido=<math>\overrightarrow{d'}</math>}}, y sea <math>\alpha \,</math> el ángulo que forman. Se verifica que+{{Teorema|titulo=Proposición|enunciado=Dadas dos rectas con vectores de dirección {{sube|porcentaje=+40%|contenido=<math>\overrightarrow{d}</math>}} y {{sube|porcentaje=+40%|contenido=<math>\overrightarrow{d'}</math>}}, y sea <math>\alpha \,</math> el ángulo que forman. Se verifica que
<center><math>cos \, \alpha = \cfrac{|\overrightarrow{d} \cdot \overrightarrow{d'}|}{|\overrightarrow{d}||\overrightarrow{d'}|}</math></center> <center><math>cos \, \alpha = \cfrac{|\overrightarrow{d} \cdot \overrightarrow{d'}|}{|\overrightarrow{d}||\overrightarrow{d'}|}</math></center>
Línea 29: Línea 31:
}} }}
{{p}} {{p}}
-{{p}}+{{Ejemplo|titulo=Ejemplo: ''Ángulo entre dos rectas''|enunciado=Halla el ángulo que forman las siguientes rectas:
-{{AI2|titulo=Actividad interactiva: ''Ángulo entre dos rectas''|cuerpo=+
-{{ai_cuerpo+
-|enunciado='''Actividad 1:''' Halla el ángulo que forman dos rectas dadas en ecuaciones paramétricas y utiliza la escena para comprobar los resultados.+
-{{p}}+
-|actividad=Vamos a hallar el ángulo que forman las rectas:+
<center><math> <center><math>
Línea 49: Línea 46:
\end{cases}</math> \end{cases}</math>
</center> </center>
- +|sol=
Sus vectores de dirección son: {{sube|porcentaje=+20%|contenido=<math>\overrightarrow{d_1}(4,-1)</math>}} y {{sube|porcentaje=+20%|contenido=<math>\overrightarrow{d_2}(5,1)</math>}}, de manera que: Sus vectores de dirección son: {{sube|porcentaje=+20%|contenido=<math>\overrightarrow{d_1}(4,-1)</math>}} y {{sube|porcentaje=+20%|contenido=<math>\overrightarrow{d_2}(5,1)</math>}}, de manera que:
<center><math>cos \, \alpha=\cfrac{| \overrightarrow{d_1} \cdot \overrightarrow{d_2}|}{|\overrightarrow{d_1}| \, |\overrightarrow{d_2}|}=\cfrac{19}{\sqrt{17} \, \sqrt{26}}=0.9 \rightarrow \alpha=25.34^\circ</math></center> <center><math>cos \, \alpha=\cfrac{| \overrightarrow{d_1} \cdot \overrightarrow{d_2}|}{|\overrightarrow{d_1}| \, |\overrightarrow{d_2}|}=\cfrac{19}{\sqrt{17} \, \sqrt{26}}=0.9 \rightarrow \alpha=25.34^\circ</math></center>
 +}}
 +{{p}}
 +{{Videotutoriales|titulo=Ángulo entre dos rectas|enunciado=
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial
 +|duracion=6´06"
 +|url1=https://youtu.be/040aVzsO5N0?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +|sinopsis=Cálculo del ángulo entre dos rectas. Ejemplos.
-<center><iframe>+'''Nota:''' En este tutorial se usa la fórmula sin valor absoluto, con lo cual en unos casos sale el ángulo mayor y en otros el menor.
-url=http://maralboran.org/web_ma/descartes/Bach_CNST_1/Geometria_afin_analitica_plano_lugares_geometricos/Geometria_3_3.html+
-width=490+
-height=410+
-name=myframe<math>Escribe aquí una fórmula</math><math>Escribe aquí una fórmula</math>+
-</iframe></center>+
-<center>[http://maralboran.org/web_ma/descartes/Bach_CNST_1/Geometria_afin_analitica_plano_lugares_geometricos/Geometria_3_3.html '''Click''' aquí si no se ve bien la escena]</center>+
- +
-'''Ejercicio:'''+
- +
-Halla el ángulo que forman las rectas siguientes y comprueba los resultados en la escena anterior:+
- +
-<center><math>+
-r_1: \, \begin{cases}+
-x=-3+ t+
-\\+
-y=4- 5t+
-\end{cases}+
-\qquad +
-r_2: \, \begin{cases}+
-x=-3+ 5t+
-\\+
-y=4+ t+
-\end{cases}</math></center>+
}} }}
 +{{Video_enlace_pildoras
 +|titulo1=Ejercicio
 +|duracion=6´46"
 +|url1=https://youtu.be/8VDYIxWr_mA?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +|sinopsis=Cálculo de los ángulos de un triángulo conocidas las coordenadas de los vértices.
}} }}
-{{p}}+}}
 + 
==Ángulo entre dos rectas dadas en forma implícita== ==Ángulo entre dos rectas dadas en forma implícita==
-{{Teorema|titulo=Proposición|enunciado=:Sean <math>r:\, Ax+By+C=0</math> y <math>r': \, A'x+B'y+C'=0</math> dos rectas, y sea <math>\alpha \,</math> el ángulo que forman. Se verifica que+{{Teorema|titulo=Proposición|enunciado=Sean <math>r:\, Ax+By+C=0</math> y <math>r': \, A'x+B'y+C'=0</math> dos rectas, y sea <math>\alpha \,</math> el ángulo que forman. Se verifica que
<center><math>cos \, \alpha = \cfrac{|\overrightarrow{n} \cdot \overrightarrow{n'}|}{|\overrightarrow{n}||\overrightarrow{n'}|}</math></center> <center><math>cos \, \alpha = \cfrac{|\overrightarrow{n} \cdot \overrightarrow{n'}|}{|\overrightarrow{n}||\overrightarrow{n'}|}</math></center>
Línea 92: Línea 80:
==Ángulo entre dos rectas a partir de sus pendientes== ==Ángulo entre dos rectas a partir de sus pendientes==
-{{Teorema|titulo=Proposición|enunciado=:Dadas dos rectas con pendientes <math>m\,</math> y {{sube|porcentaje=+20%|contenido=<math>m'\,</math>}}. Se verifica que+{{Teorema|titulo=Proposición|enunciado=Dadas dos rectas con pendientes <math>m\,</math> y {{sube|porcentaje=+20%|contenido=<math>m'\,</math>}}. Se verifica que
<center><math>tg \, \phi = \Big| \cfrac{m'-m}{1+m \,m'} \Big|</math></center> <center><math>tg \, \phi = \Big| \cfrac{m'-m}{1+m \,m'} \Big|</math></center>
 +
|demo={{Tabla75|celda2=[[Imagen:ang2rectas.png]]|celda1= |demo={{Tabla75|celda2=[[Imagen:ang2rectas.png]]|celda1=
Teniendo en cuenta que <math>m=tg \, \alpha</math> y <math>m'=tg \, \beta</math>, usando la fórmula de la tangente de la diferencia de dos ángulos, tenemos: Teniendo en cuenta que <math>m=tg \, \alpha</math> y <math>m'=tg \, \beta</math>, usando la fórmula de la tangente de la diferencia de dos ángulos, tenemos:
-:<math>tg \, \phi=tg \, (\alpha - \beta)= \Big| \cfrac{tg \, \alpha - tg \, \beta}{1+tg \, \alpha \, tg \, \beta} \Big|= \Big| \cfrac{m'-m}{1+m \,m'} \Big|</math>+<center><math>tg \, \phi=tg \, (\alpha - \beta)= \cfrac{tg \, \alpha - tg \, \beta}{1+tg \, \alpha \, tg \, \beta} = \cfrac{m'-m}{1+m \,m'} </math></center>
 +Para conseguir que el ángulo sea el menor, tomamos valores absolutos en la expresión anterior:
 +
 +<center><math>tg \, \phi=\Big| \cfrac{m'-m}{1+m \,m'} \Big|</math></center>
 +
 +{{p}}
 +----
 +También puedes ver la demostración en el siguiente video:
 +
 +{{Video_enlace_velazco
 +|titulo1=Demostración
 +|duracion=5´40"
 +|url1=https://www.youtube.com/watch?v=5eKwXVpQgmU&index=10&list=PLPrT9FThiZ6QfKolkw-a6qholvFwVde1n
 +|sinopsis=Demostración de la fórmula del ángulo entre dos rectas conocidas sus pendientes.
}} }}
}} }}
-==Videotutoriales==+}}
 +{{p}}
 +{{Video_enlace_velazco
 +|titulo1=Ejemplo
 +|duracion=8´41"
 +|url1=https://www.youtube.com/watch?v=PiVwCSU9VyE&list=PLPrT9FThiZ6QfKolkw-a6qholvFwVde1n&index=9
 +|sinopsis=Halla el ángulo entre las rectas <math>r_1: -x+y=2\;</math> {{b}} y {{b}} <math>r_2: -5x-4y=13\;</math>.
 +}}
 +{{Geogebra_enlace
 +|descripcion=En esta escena podrás calcular el ángulo entre dos rectas.
 +|enlace=[https://ggbm.at/aN4z3FsT Ángulo entre dos rectas]
 +}}
 +{{p}}
 + 
 +==Ejercicios y videotutoriales==
{{p}} {{p}}
-{{Video_enlace+{{Videotutoriales|titulo=Ángulo entre dos rectas|enunciado=
-|titulo1=Ángulo entre dos rectas. Paralelismo y perpendicularidad+{{Video_enlace_fonemato
 +|titulo1=Tutorial
|duracion=19´39" |duracion=19´39"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/02-angulo-de-dos-rectas#.VC7KTxa7ZV8+|url1=https://www.youtube.com/watch?v=MFb6D-EZyGo&list=PLF10C7CAD9DEE955C&index=10
|sinopsis= |sinopsis=
*Ángulo entre dos rectas. *Ángulo entre dos rectas.
*Paralelismo y perpendicularidad. *Paralelismo y perpendicularidad.
}} }}
-{{p}}+----
-{{Video_enlace+{{Video_enlace_fonemato
-|titulo1= Proyección de un punto sobre una recta+|titulo1=Ejercicio 1
-|duracion=7'15"+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/05-proyeccion-de-un-punto-sobre-una-recta#.VC7XRha7ZV8+
-|sinopsis=Videotutorial+
-}}+
-{{p}}+
-{{ejercicio+
-|titulo=Ejercicios: ''Ángulo entre dos rectas''+
-|cuerpo=+
-{{Video_enlace+
-|titulo1=2 ejercicios+
|duracion=8´20" |duracion=8´20"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0201-dos-ejercicios-5#.VC7Kwha7ZV8+|url1=https://www.youtube.com/watch?v=OVWQ_6Lt4NA&list=PLF10C7CAD9DEE955C&index=11
-|sinopsis=Videotutorial+|sinopsis=Ángulo entre dos rectas
}} }}
-{{Video_enlace+{{Video_enlace_fonemato
-|titulo1=Ejercicio 1+|titulo1=Ejercicio 2
|duracion=7´07" |duracion=7´07"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0202-ejercicio-11#.VC7LFBa7ZV8+|url1=https://www.youtube.com/watch?v=asksI6mMNKY&list=PLF10C7CAD9DEE955C&index=12
-|sinopsis=Videotutorial+|sinopsis=Ángulo entre dos rectas
}} }}
-{{Video_enlace+{{Video_enlace_fonemato
-|titulo1=Ejercicio 2+|titulo1=Ejercicio 3
|duracion=6´18" |duracion=6´18"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0203-ejercicio-10-2#.VC7MsBa7ZV8+|url1=https://www.youtube.com/watch?v=jI_UhPEnXMI&list=PLF10C7CAD9DEE955C&index=13
-|sinopsis=Videotutorial+|sinopsis=Ángulo entre dos rectas
}} }}
-{{Video_enlace 
-|titulo1=3 ejercicios (Paralelismo) 
-|duracion=10´22" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0204-tres-ejercicios#.VC7M2xa7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1=3 ejercicios (Perpendicularidad) 
-|duracion=9´44" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0205-tres-ejercicios-2#.VC7NDRa7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1=2 ejercicios (Perpendicularidad) 
-|duracion=6´12" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0206-dos-ejercicios#.VC7NORa7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1=Ejercicio (Simétrico de un punto respecto a una recta) 
-|duracion=7´20" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0207-ejercicio-simetrico-de-un-punto-respecto-a-una-recta#.VC7NqBa7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1= Ejercicio (Ortocentro de un triángulo) 
-|duracion=8´11" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0208-ejercicio-ortocentro-de-un-triangulo#.VC7O-ha7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1= Ejercicio (Circuncentro de un triángulo) 
-|duracion=11'24" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0209-ejercicio-circuncentro-de-un-triangulo#.VC7PKha7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1= Ejercicio (Triángulo equilátero) 
-|duracion=6'38" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0210-ejercicio-triangulo-equilatero#.VC7Pbha7ZV8 
-|sinopsis=Videotutorial 
-}} 
-{{Video_enlace 
-|titulo1= Ejercicio (Triángulo isósceles) 
-|duracion=4'36" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/09-la-recta-en-el-plano/0211-ejercicio-triangulo-isosceles#.VC7Prha7ZV8 
-|sinopsis=Videotutorial 
}} }}
 +
 +===Ejercicios propuestos===
 +{{ejercicio
 +|titulo=Ejercicios propuestos: ''Ecuaciones trigonométricas''
 +|cuerpo=
 +(Pág. 202)
 +
 +[[Imagen:red_star.png|12px]] 1a,b,c
 +
 +[[Imagen:yellow_star.png|12px]] 1d
}} }}
 +
[[Categoría: Matemáticas]][[Categoría: Geometría]] [[Categoría: Matemáticas]][[Categoría: Geometría]]

Revisión actual

Tabla de contenidos

(Pág. 202)

Ángulo entre dos rectas

El ángulo entre dos rectas del plano es el menor de los dos ángulos que forman éstas entre sí.

Ángulo entre dos rectas a partir de sus vectores de dirección

ejercicio

Proposición


Dadas dos rectas con vectores de dirección \overrightarrow{d} y \overrightarrow{d'}, y sea \alpha \, el ángulo que forman. Se verifica que

cos \, \alpha = \cfrac{|\overrightarrow{d} \cdot \overrightarrow{d'}|}{|\overrightarrow{d}||\overrightarrow{d'}|}
Imagen:angrectas.png

ejercicio

Ejemplo: Ángulo entre dos rectas


Halla el ángulo que forman las siguientes rectas:

r_1: \, \begin{cases} x=-3+ 4t \\ y=4- t \end{cases} \qquad  r_2: \, \begin{cases} x=-3+ 5t \\ y=4+ t \end{cases}

Ángulo entre dos rectas dadas en forma implícita

ejercicio

Proposición


Sean r:\, Ax+By+C=0 y r': \, A'x+B'y+C'=0 dos rectas, y sea \alpha \, el ángulo que forman. Se verifica que

cos \, \alpha = \cfrac{|\overrightarrow{n} \cdot \overrightarrow{n'}|}{|\overrightarrow{n}||\overrightarrow{n'}|}
donde n(A,B)\, y n'(A',B')\, son los vectores normales de las rectas.

Ángulo entre dos rectas a partir de sus pendientes

ejercicio

Proposición


Dadas dos rectas con pendientes m\, y m'\,. Se verifica que

tg \, \phi = \Big| \cfrac{m'-m}{1+m \,m'} \Big|

Ejercicios y videotutoriales

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Ecuaciones trigonométricas


(Pág. 202)

1a,b,c

1d

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda