Plantilla:Ecuaciones logaritmicas

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:31 30 ago 2016
Coordinador (Discusión | contribuciones)

← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)

Línea 8: Línea 8:
{{p}} {{p}}
{{Ejemplo|titulo=Ejemplos: ''Ecuaciones logarítmicas'' {{Ejemplo|titulo=Ejemplos: ''Ecuaciones logarítmicas''
-|enunciado=:Resuelve las siguientes ecuaciónes:+|enunciado=Resuelve las siguientes ecuaciónes:
-::a) <math>log \ x + log \ 50 = 3</math>+:a) <math>log \ x + log \ 50 = 3</math>
-::b) <math>5\, log_2 \ (x+3)= log_2 \ 32</math>+:b) <math>5\, log_2 \ (x+3)= log_2 \ 32</math>
-::c) <math>2\, log \ x= log \ (10-3x)</math>+:c) <math>2\, log \ x= log \ (10-3x)</math>
|sol= |sol=
'''a)''' '''a)'''
<center><math>log \ x + log \ 50 = 3</math></center> <center><math>log \ x + log \ 50 = 3</math></center>
<br> <br>
-:Teniendo en cuenta que <math>log \ A + log \ B = log \ (A \cdot B)</math> y que <math>3 = log \ 1000</math>, tenemos:+Teniendo en cuenta que <math>log \ A + log \ B = log \ (A \cdot B)</math> y que <math>3 = log \ 1000</math>, tenemos:
<br> <br>
<center><math>log \ (50x) = log \ 1000</math></center> <center><math>log \ (50x) = log \ 1000</math></center>
<br> <br>
-:Y teniendo en cuenta que <math>log \ A = log \ B \iff A=B</math>, se tiene:+Y teniendo en cuenta que <math>log \ A = log \ B \iff A=B</math>, se tiene:
<center><math>50x=1000 \ \rightarrow \ x=20</math></center> <center><math>50x=1000 \ \rightarrow \ x=20</math></center>
-:La solución se comprueba en la ecuación de partida y resulta ser válida.+La solución se comprueba en la ecuación de partida y resulta ser válida.
<br> <br>
-:'''''Solución:''''' <math>x=20\;</math>+ 
 +'''''Solución:''''' <math>x=20\;</math>
---- ----
'''b)''' '''b)'''
<center><math>5\, log_2 \ (x+3)= log_2 \ 32</math></center> <center><math>5\, log_2 \ (x+3)= log_2 \ 32</math></center>
<br> <br>
-:Teniendo en cuenta que <math>log_a \ B^n = n \ log_a \ B</math> y que <math>32=2^5\;</math>:+Teniendo en cuenta que <math>log_a \ B^n = n \ log_a \ B</math> y que <math>32=2^5\;</math>:
<br> <br>
<center><math>log_2 \ (x+3)^5= log_2 \ 2^5</math></center> <center><math>log_2 \ (x+3)^5= log_2 \ 2^5</math></center>
<br> <br>
-:Como <math>log \ A = log \ B \iff A=B</math>, se tiene:+Como <math>log \ A = log \ B \iff A=B</math>, se tiene:
<center><math>(x+3)^5= 2^5\;</math></center> <center><math>(x+3)^5= 2^5\;</math></center>
-:Y, como <math>a^x = b^x \iff a=b</math>+Y, como <math>a^x = b^x \iff a=b</math>
<center><math>x+3= 2 \ \rightarrow \ x=-1</math></center> <center><math>x+3= 2 \ \rightarrow \ x=-1</math></center>
-:Se comprueba en la ecuación de partida y resulta ser válida.+Se comprueba en la ecuación de partida y resulta ser válida.
<br> <br>
-:'''''Solución:''''' <math>x=-1\;</math>+ 
 +'''''Solución:''''' <math>x=-1\;</math>
---- ----
'''c)''' '''c)'''
<center><math>2\, log \ x= log \ (10-3x)</math></center> <center><math>2\, log \ x= log \ (10-3x)</math></center>
<br> <br>
-:Teniendo en cuenta que <math>log_a \ B^n = n \ log_a \ B</math>, tenemos:+Teniendo en cuenta que <math>log_a \ B^n = n \ log_a \ B</math>, tenemos:
<br> <br>
<center><math>log \ x^2= log \ (10-3x) </math></center> <center><math>log \ x^2= log \ (10-3x) </math></center>
<br> <br>
-:Como <math>log \ A = log \ B \iff A=B</math>, se tiene:+Como <math>log \ A = log \ B \iff A=B</math>, se tiene:
<center><math>x^2= 10-3x \ \rightarrow \ x^2+3x-10=0 \ \rightarrow \ \begin{cases} x_1=2 \\ x_2=-5 \end{cases}</math></center> <center><math>x^2= 10-3x \ \rightarrow \ x^2+3x-10=0 \ \rightarrow \ \begin{cases} x_1=2 \\ x_2=-5 \end{cases}</math></center>
-:De las dos soluciones, <math>x_2=-5\;</math> no es válida, porque al comprobarla en la ecuación de partida, <math>log \ x\;</math> no se puede calcular para <math>x=-5\;</math> (El logaritmo de un número negativo no existe).+De las dos soluciones, <math>x_2=-5\;</math> no es válida, porque al comprobarla en la ecuación de partida, <math>log \ x\;</math> no se puede calcular para <math>x=-5\;</math> (El logaritmo de un número negativo no existe).
<br> <br>
-:'''''Solución:''''' <math>x=2\;</math>+ 
 +'''''Solución:''''' <math>x=2\;</math>
}} }}
-===Videotutoriales sobre ecuaciones logarítmicas===+{{p}}
-{{Video_enlace2+{{Videotutoriales|titulo=Ecuaciones logarítmicas
-|titulo1=2 ejercicios+|enunciado=
 +{{Video_enlace_clasematicas
 +|titulo1=Tutorial 1
 +|duracion=21'07"
 +|sinopsis=Tutorial que trabaja las ecuaciones logarítmicas, desde muy sencillas que se resuelven utilizando únicamente la definición, hasta otras más completas.
 + 
 +*00:00 a 02:36: Repaso de las propiedades de los logaritmos.
 +*02:36 a 08:20: Ejercicios "base" para resolver ecuaciones.
 +*08:20 a 11:55: Ejercicios básicos de ecuaciones logarítmicas, usando la definición de logaritmo.
 +*11:55 a 21:07: Ejercicios de ecuaciones logarítmicas.
 + 
 +|url1=https://www.youtube.com/watch?v=ybzYfvojnNE&index=10&list=PLZNmE9BEzVInJZxxpaxecd3SH4TK5eggR
 +}}
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial 2
 +|duracion=10'35"
 +|sinopsis=Ecuaciones logarítmicas.
 +|url1=https://youtu.be/n6Ua7uNDLw4?list=PLwCiNw1sXMSBS-xkrGZm69M_Jc4bqmBKl
 +}}
 +----
 +{{Tabla50|celda1=
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 1
 +|duracion=4'09"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_4 \, (x-3) = 1 - log_4 \, x\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=riqZcExsvcE
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 2
 +|duracion=2'55"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_x \, (6-x) = 2 \, x\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=1qVTH0Dr4C0
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 3
 +|duracion=3'22"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_2 \, 3 + log_2 \, x = log_2 \, 5 + log_2 \, (x-2)\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=UcgsO70f5sU
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 4
 +|duracion=9'44"
 +|sinopsis=Resuelve:
 + 
 +:<math>log \, (4x+5) + log \, (x-1) = 2\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=LW_sP5jDBQA
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 5
 +|duracion=5'26"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_{x+2} \, 3\, + 4 = 6\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=g3KhxSJVcSg
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 6
 +|duracion=7'05"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_3 \, x + log_9 \, x +log_27 \, x = \cfrac{55}{6}\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=EaxI046b7t8
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 7
 +|duracion=11'30"
 +|sinopsis=Resuelve:
 + 
 +:<math>25^{log_5 \, (x-3)} - 3^{log_3 \, (5x)} + 10^{log \, 6} = 0\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=ZF47GJUB6iU
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 8
 +|duracion=10'41"
 +|sinopsis=Resuelve:
 + 
 +:<math>log \, (7x+1) = 2^log \, (x+3) -log \, 2\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=5KWcFn1jWDs
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 9
 +|duracion=15'53"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_3 \, (2x-1) - log_3 \, (5x+2) = log_3 \, (x-2)\, - 2\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=_dDp9BoFODI
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 10
 +|duracion=10'53"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_3 \, (x+1) - log_3 \, x = log_3 \, (x+9)\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=yLoA7aEGJz0
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 11
 +|duracion=11'44"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_4 \, x + log_8 \, x = 1\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=dm8d4yUTqJ0
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 12
 +|duracion=6'49"
 +|sinopsis=Resuelve:
 + 
 +:<math>2ln \, x = ln \, (4x+6)- ln \, 2\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=ZuYTDvLW4hw
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 13
 +|duracion=14'17"
 +|sinopsis=Resuelve:
 + 
 +:<math>log_4 \, (2^x+48) = x-1\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=f1_ACPdtA-Q
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 14
 +|duracion=7'51"
 +|sinopsis=Resuelve:
 + 
 +:<math>(log_2)^2 \, x = log_2 \, x^2 \,+ 3\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=dApslxUJMhU
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 15
 +|duracion=8'44"
 +|sinopsis=Resuelve:
 + 
 +:<math>log \, \sqrt[3]{x} = \sqrt{log \, x}\;</math>
 + 
 +|url1=https://www.youtube.com/watch?v=T1it4Pc0jlo
 +}}
 +{{Video_enlace_unicoos
 +|titulo1=Ejercicio 16
 +|duracion=10'26"
 +|sinopsis=Resuelve:
 +:a) <math>log \, (22-x) = -1 + log \, x\;</math>
 +:b) <math>3log \, x = 2log \, x + log \, 3 \;</math>
 +|url1=http://www.unicoos.com/video/matematicas/4-eso/ecuaciones-y-sistemas/ecuaciones-exponenciales-y-logaritmicas/ecuacion-logaritmica-01
 +}}
 +{{Video_enlace_fonemato
 +|titulo1=Ejercicio 17
|duracion=6´39" |duracion=6´39"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/14-logaritmos/0205-dos-ejercicios-ecuaciones-logaritmicas#.VCctKvl_u2E+|url1=https://www.youtube.com/watch?v=2xWsWOtUOjc&index=9&list=PL2287F157D20941E5
-|sinopsis=Videotutorial+|sinopsis=Resuelve:
 +#<math>log \, (x+1) - log \, x = 1 \;</math>
 +#<math>log \, (x-1) - log \, (x-9) = 3 \;</math>
}} }}
-{{p}}+|celda2=
-{{Video_enlace2+{{Video_enlace_fonemato
-|titulo1=2 ejercicios+|titulo1=Ejercicio 18
|duracion=8´55" |duracion=8´55"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/14-logaritmos/0206-dos-ejercicios-ecuaciones-logaritmicas#.VCctnvl_u2E+|url1=https://www.youtube.com/watch?v=GbTtihJTxnA&index=10&list=PL2287F157D20941E5
-|sinopsis=Videotutorial+|sinopsis=Resuelve:
 +#<math>log \, (x-16) + log \, (x+5) = 2 \;</math>
 +#<math>2 \, log \, x = 1 + log \, (x-0.9) \;</math>
}} }}
-{{p}}+{{Video_enlace_fonemato
-{{Video_enlace2+|titulo1=Ejercicio 19
-|titulo1=2 ejercicios+|duracion=5´06"
-|duracion=5´56"+|url1=https://www.youtube.com/watch?v=JYfNHvgavPA&index=11&list=PL2287F157D20941E5
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/14-logaritmos/0207-dos-ejercicios-ecuaciones-logaritmicas#.VCctyfl_u2E+|sinopsis=Resuelve:
-|sinopsis=Videotutorial+#<math>3 \, log \, x - log \, (2x^2+x-2) = 0 \;</math>
 +#<math>log \, 2 + log \, (x-3) = log \, \sqrt{2x} \;</math>
}} }}
-{{p}}+{{Video_enlace_fonemato
-{{Video_enlace2+|titulo1=Ejercicio 20
-|titulo1=3 ejercicios+
|duracion=7´29" |duracion=7´29"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/14-logaritmos/0208-tres-ejercicios-ecuaciones-logaritmicas#.VCct4fl_u2E+|url1=https://www.youtube.com/watch?v=oEdy4c0SUR8&index=12&list=PL2287F157D20941E5
-|sinopsis=Videotutorial+|sinopsis=Resuelve:
 +#<math>log \, (x-1) - log \, \sqrt{5+x} =log \, \sqrt{5-x} \;</math>
 +#<math>2 \, \left( log \, x \right)^2 - 3 \, log \, x \ + 1 = 0 \;</math>
 +#<math>\left( ln \, x \right)^3 - ln \, x = 0 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 21
 +|duracion=5´06"
 +|url1=https://www.youtube.com/watch?v=XXmXZK8fhGs&index=1&list=PLo7_lpX1yruM2gkXcbGVpW-Cqtp2oPZs7
 +|sinopsis=Resuelve: <math>log_5 \, x - log_25 \, x =1 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 22
 +|duracion=9´33"
 +|url1=https://www.youtube.com/watch?v=VC7LQz-0Ylc&list=PLo7_lpX1yruM2gkXcbGVpW-Cqtp2oPZs7&index=2
 +|sinopsis=Resuelve: <math>log_2 \, x + log_8 \, x - log_{32} \, x=\cfrac{34}{15} \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 23
 +|duracion=9´09"
 +|url1=https://www.youtube.com/watch?v=19OiKjEdZ5Q&list=PLo7_lpX1yruM2gkXcbGVpW-Cqtp2oPZs7&index=3
 +|sinopsis=Resuelve: <math>log_3 \, 9x + log_{27} \, x=6 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 24
 +|duracion=3´04"
 +|url1=https://www.youtube.com/watch?v=UL8UA2yNq78&index=1&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu
 +|sinopsis=Resuelve: <math>log_3 \, (x+3)=2 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 25
 +|duracion=5´17"
 +|url1=https://www.youtube.com/watch?v=pPBJuT75Gk0&index=2&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu
 +|sinopsis=Resuelve: <math>log_3 \, 36-log_3 \, (x-7)=2 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 26
 +|duracion=4´53"
 +|url1=https://www.youtube.com/watch?v=1s4epFHRZeI&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu&index=3
 +|sinopsis=Resuelve: <math>log_7 \, (x+9)+log_7 \, 49=3 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 27
 +|duracion=4´02"
 +|url1=https://www.youtube.com/watch?v=a8v_rI9IAXU&index=4&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu
 +|sinopsis=Resuelve: <math>log_2 \, \sqrt{3x+1}=2 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 28
 +|duracion=4´08"
 +|url1=https://www.youtube.com/watch?v=SoQMGS_sXNo&index=5&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu
 +|sinopsis=Resuelve: <math>log_6 \, (5x-9)^2=4 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 29
 +|duracion=3´41"
 +|url1=https://www.youtube.com/watch?v=Kj0X2MI5314&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu&index=6
 +|sinopsis=Resuelve <math>log \, \sqrt{x^2+75}=1 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 30
 +|duracion=5´56"
 +|url1=https://www.youtube.com/watch?v=jQk7xwqj-i0&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu&index=7
 +|sinopsis=Resuelve: <math>log \, (x+3)^2=1+log \, (3x-11) \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 31
 +|duracion=4´11"
 +|url1=https://www.youtube.com/watch?v=YD_0_FUngEc&index=8&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu
 +|sinopsis=Resuelve: <math>log_6 \, \sqrt[3]{4x-1}=log_6 \, \sqrt[3]{9}+log_6 \, \sqrt[3]{x-4} \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 32
 +|duracion=7´08"
 +|url1=https://www.youtube.com/watch?v=MihEXM-QrIM&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu&index=9
 +|sinopsis=Resuelve: <math>ln \, x + ln \, (x-3e) = ln \, 4 + 2 \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 33
 +|duracion=4´46"
 +|url1=https://www.youtube.com/watch?v=aCimqY1_SQE&index=10&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu
 +|sinopsis=Resuelve: <math>ln \, (x^2+x) - ln \, e = ln \, (x+1) \;</math>
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 34
 +|duracion=5´07"
 +|url1=https://www.youtube.com/watch?v=7BgMPYqIVDw&list=PLo7_lpX1yruOdeP3Xnz5xYEjgB_u8fGgu&index=11
 +|sinopsis=Resuelve: <math>\left( log_2 \, x \right)^2 = 1 \;</math>
 +}}
 +}}
 +}}
 +{{Ejercicios_vitutor
 +|titulo1=Ejercicios: ''Ecuaciones logarítmicas''
 +|descripcion=Ejercicios resueltos sobre ecuaciones logarítmicas''.
 +|url1=http://www.vitutor.com/al/log/l_e.html
}} }}
{{p}} {{p}}
 +{{wolfram desplegable|titulo=Ecuaciones logarítmicas|contenido=
{{wolfram {{wolfram
|titulo=Actividad: ''Ecuaciones logarítmicas'' |titulo=Actividad: ''Ecuaciones logarítmicas''
Línea 104: Línea 371:
:a) <math>ln(x-3)+ln(x+1)=ln\,3+ln(x-1) \;</math> :a) <math>ln(x-3)+ln(x+1)=ln\,3+ln(x-1) \;</math>
-:b) <math>2(log\,x)^2+7log\,x-9=0 \;</math>+:b) <math>2\,(log\,x)^2+7\,log\,x-9=0 \;</math>
{{p}} {{p}}
|sol= |sol=
Línea 116: Línea 383:
{{widget generico}} {{widget generico}}
}} }}
- 
}} }}
-{{p}}+}}

Revisión actual

Las ecuaciones logarítmicas son aquellas en las que la incógnita aparece como parte de un logaritmo.

Para su resolución hay que tener en cuenta las propiedades de los logaritmos.

Se deben comprobar siempre las soluciones en la ecuación de partida pues pueden obtenerse soluciones que no sean válidas, como puede verse en el ejemplo c) siguiente.

ejercicio

Ejemplos: Ecuaciones logarítmicas


Resuelve las siguientes ecuaciónes:

a) log \ x + log \ 50 = 3
b) 5\, log_2 \ (x+3)= log_2 \ 32
c) 2\, log \ x= log \ (10-3x)

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda