Límite de una sucesión (1ºBach)
De Wikipedia
Revisión de 17:54 27 sep 2019 Coordinador (Discusión | contribuciones) (→Sucesiones oscilantes) ← Ir a diferencia anterior |
Revisión actual Coordinador (Discusión | contribuciones) (→Ejercicios) |
||
Línea 134: | Línea 134: | ||
<center><math>lim \ a_n = l \ \Leftrightarrow \ \forall \, \varepsilon > 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ |a_n -l|<\varepsilon</math></center> | <center><math>lim \ a_n = l \ \Leftrightarrow \ \forall \, \varepsilon > 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ |a_n -l|<\varepsilon</math></center> | ||
{{p}} | {{p}} | ||
- | *Cuando los términos de una sucesión <math>a_n\;</math> superan a cualquier número "k" tan grande como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión '''tiende''' a <math>+\infty \;</math> o que su '''límite''' es <math>+\infty \;</math>. Diremos que la sucesión es '''divergente'''. Lo escribiremos simbólicamente:{{p}} | + | *Cuando una sucesión no es convergente diremos que es '''divergente'''. |
+ | *Cuando los términos de una sucesión <math>a_n\;</math> superan a cualquier número "k" tan grande como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión '''tiende''' a <math>+\infty \;</math> o que su '''límite''' es <math>+\infty \;</math>. Por tanto, la sucesión es '''divergente'''. Lo escribiremos simbólicamente:{{p}} | ||
<center><math>lim \ a_n = +\infty \ \Leftrightarrow \ \forall \, k > 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ a_n> k</math></center> | <center><math>lim \ a_n = +\infty \ \Leftrightarrow \ \forall \, k > 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ a_n> k</math></center> | ||
{{p}} | {{p}} | ||
- | *Cuando los términos de una sucesión <math>a_n\;</math> toman valores inferiores a cualquier número "k" negativo tan pequeño como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión '''tiende''' a <math>-\infty \;</math> o que su '''límite''' es <math>-\infty \;</math>. Diremos que la sucesión es '''divergente'''. Lo escribiremos simbólicamente:{{p}} | + | *Cuando los términos de una sucesión <math>a_n\;</math> toman valores inferiores a cualquier número "k" negativo tan pequeño como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión '''tiende''' a <math>-\infty \;</math> o que su '''límite''' es <math>-\infty \;</math>. Por tanto, la sucesión es '''divergente'''. Lo escribiremos simbólicamente:{{p}} |
<center><math>lim \ a_n = -\infty \ \Leftrightarrow \ \forall \, k < 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ a_n< k</math></center> | <center><math>lim \ a_n = -\infty \ \Leftrightarrow \ \forall \, k < 0, \, \exists \, n_0 \in \mathbb{N} \ / \ \forall \, n > n_0, \ a_n< k</math></center> | ||
Línea 197: | Línea 198: | ||
{{p}} | {{p}} | ||
{{Warning|titulo=Advertencia:|texto= | {{Warning|titulo=Advertencia:|texto= | ||
- | En esta página consideramos la divergencia como la no existencia de límite y, por tanto, una sucesión puede ser convergente o no convergente (divergente). Sin embargo, algunos matemáticos consideran la divergencia como la tendencia a infinito. En este segundo caso, una sucesión puede ser convergente, divergente o no convergente ni divergente. | + | En esta página consideramos la divergencia como la no existencia de límite (<math>l \in \mathbb{R}\;</math>) y, por tanto, una sucesión puede ser convergente o no convergente (divergente). Sin embargo, algunos matemáticos consideran la divergencia como la tendencia a infinito. En este segundo caso, una sucesión puede ser convergente, divergente o no convergente ni divergente. |
}} | }} | ||
{{p}} | {{p}} | ||
Línea 207: | Línea 208: | ||
}} | }} | ||
{{p}} | {{p}} | ||
- | {{Ejemplo|titulo=Ejemplo: ''Sucesión oscilante'' | + | |
+ | ===Sucesiones alternadas=== | ||
+ | {{Caja_Amarilla|texto=Una sucesión diremos que es '''alternada''' si sus términos van alternando en signo.}} | ||
+ | |||
+ | {{p}} | ||
+ | {{Ejemplo_simple|titulo=Ejemplos:|contenido=Son sucesiones alternadas: | ||
+ | |||
+ | <math>\{1, -1,\, 2, -2,\, 3, -3,\, 4, -4, ...\}\;</math>, que además es oscilante. | ||
+ | |||
+ | <math>\{1, -1,\, \cfrac{1}{2},\, -\cfrac{1}{2},\, \cfrac{1}{4},\, -\cfrac{1}{4},\, \cfrac{1}{8},\, -\cfrac{1}{8},...\}\;</math>, que además es convergente (a cero). | ||
+ | }} | ||
+ | {{p}} | ||
+ | {{Ejemplo|titulo=Ejemplo: ''Sucesión oscilante y alternada'' | ||
|enunciado= | |enunciado= | ||
La siguiente sucesión no tiene límite | La siguiente sucesión no tiene límite | ||
Línea 220: | Línea 233: | ||
<center><math>-1,\ 2,\ -3,\ 4,\ -5,\ 6,\ -7,\ 8,\ \cdots</math></center> | <center><math>-1,\ 2,\ -3,\ 4,\ -5,\ 6,\ -7,\ 8,\ \cdots</math></center> | ||
<br> | <br> | ||
- | Se trata de una que no es ni convergente, ni divergente. ('''sucesión oscilante'''). También es una '''sucesión alternada''' porque sus términos van alternando entre positivos y negativos. | + | Se trata de una '''sucesión oscilante'''. También es una '''sucesión alternada''' porque sus términos van alternando entre positivos y negativos. |
Esto es debido a que sus términos se aproximan a dos valores distintos: los términos impares tienden a <math>+\infty \;</math> y los pares a <math>-\infty \;</math>, como puede verse en la representación gráfica de la sucesión. | Esto es debido a que sus términos se aproximan a dos valores distintos: los términos impares tienden a <math>+\infty \;</math> y los pares a <math>-\infty \;</math>, como puede verse en la representación gráfica de la sucesión. | ||
Línea 227: | Línea 240: | ||
[[Imagen:sucesion3.png|200px|right]] | [[Imagen:sucesion3.png|200px|right]] | ||
}} | }} | ||
- | }} | ||
- | {{p}} | ||
- | |||
- | ===Sucesiones alternadas=== | ||
- | {{Caja_Amarilla|texto=Una sucesión diremos que es '''alternada''' si sus términos van alternando en signo.}} | ||
- | |||
- | {{p}} | ||
- | {{Ejemplo_simple|titulo=Ejemplos:|contenido=Son sucesiones alternadas: | ||
- | |||
- | <math>\{1, -1,\, 2, -2,\, 3, -3,\, 4, -4, ...\}\;</math>, que además es oscilante. | ||
- | |||
- | <math>\{1, -1,\, \cfrac{1}{2},\, -\cfrac{1}{2},\, \cfrac{1}{4},\, -\cfrac{1}{4},\, \cfrac{1}{8},\, -\cfrac{1}{8},...\}\;</math>, que además es convergente (a cero). | ||
}} | }} | ||
{{p}} | {{p}} | ||
Línea 267: | Línea 268: | ||
1a. <math>a_n=3+\frac{10}{n}</math> | 1a. <math>a_n=3+\frac{10}{n}</math> | ||
- | : {{consulta|texto=Table[3+10/n,{n,1.,10.}]}} o {{consulta|texto=Table[3+10/n,{n,1.,1000.,100}]}} | + | : {{consulta|texto=Table[3+10/n,{n,1.,1000.,100}]}} |
: {{consulta|texto=Plot Table[3+10/n,{n,1.,1000.,100}]}} | : {{consulta|texto=Plot Table[3+10/n,{n,1.,1000.,100}]}} | ||
: {{consulta|texto=limit 3+10/n as n->+oo}} | : {{consulta|texto=limit 3+10/n as n->+oo}} | ||
Línea 273: | Línea 274: | ||
1b. <math>b_n=\frac{n^2-n}{2}</math> | 1b. <math>b_n=\frac{n^2-n}{2}</math> | ||
- | : {{consulta|texto=Table[(n^2-n)/2,{n,1.,10.}]}} o {{consulta|texto=Table[(n^2-n)/2,{n,1.,1000.,100}]}} | + | : {{consulta|texto=Table[(n^2-n)/2,{n,1.,1000.,100}]}} |
: {{consulta|texto=Plot Table[(n^2-n)/2,{n,1.,1000.,100}]}} | : {{consulta|texto=Plot Table[(n^2-n)/2,{n,1.,1000.,100}]}} | ||
: {{consulta|texto=limit (n^2-n)/2 as n->+oo}} | : {{consulta|texto=limit (n^2-n)/2 as n->+oo}} | ||
Línea 285: | Línea 286: | ||
2b. <math>c_n=\frac{(-1)^n}{n}</math> | 2b. <math>c_n=\frac{(-1)^n}{n}</math> | ||
- | : {{consulta|texto=Table[(-1)^n/n,{n,1.,10.}]}} o {{consulta|texto=Table[(-1)^n/n,{n,1.,1000.,100}]}} | + | : {{consulta|texto=Table[(-1)^n/n,{n,1.,1000.,100}]}} |
: {{consulta|texto=Plot Table[(-1)^n/n,{n,1.,1000.,100}]}} | : {{consulta|texto=Plot Table[(-1)^n/n,{n,1.,1000.,100}]}} | ||
: {{consulta|texto=limit (-1)^n/n as n->+oo}} | : {{consulta|texto=limit (-1)^n/n as n->+oo}} | ||
Línea 372: | Línea 373: | ||
}} | }} | ||
{{p}} | {{p}} | ||
+ | |||
==Actividades y videotutoriales== | ==Actividades y videotutoriales== | ||
Los siguientes videotutoriales no solo resumen lo visto hasta ahora sobre límites de sucesiones, sino que profundizan un poco más: | Los siguientes videotutoriales no solo resumen lo visto hasta ahora sobre límites de sucesiones, sino que profundizan un poco más: |
Revisión actual
Tabla de contenidos[esconder] |
Para acercarnos a la idea de límite, vamos a empezar viendo algunas representaciones gráficas de sucesiones.
(pág. 61)
Representación gráfica de una sucesión
Para representar gráficamente una sucesión , construiremos una tabla donde anotaremos el valor de
para distintos valores de n.
Las parejas obtenidas en la tabla, son las coordenadas de los puntos de la representación gráfica de la sucesión, que dibujaremos en unos ejes de coordenadas cartesianos.
Ejercicios resueltos: Representación gráfica y límite de una sucesión
Representa graficamente las siguientes sucesiones:
- a)
- b)
Observa que, en ambos ejemplos, los valores obtenidos cuando n es pequeño, no son representativos del valor del límite. Por tanto, el valor del límite debe deducirse tomando valores de n suficientemente grandes.
Ejercicios propuestos
Ejercicios propuestos: Representación gráfica y límite de una sucesión |
(pág. 62)
Concepto de límite de una sucesión
- Cuando los términos de una sucesión
podemos conseguir que se aproximen a un número
, tanto como queramos (a menos de una distancia
tan pequeña como deseemos) al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a
o que su límite es
. Diremos que la sucesión es convergente. Lo escribiremos simbólicamente:

- Cuando una sucesión no es convergente diremos que es divergente.
- Cuando los términos de una sucesión
superan a cualquier número "k" tan grande como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a
o que su límite es
. Por tanto, la sucesión es divergente. Lo escribiremos simbólicamente:

- Cuando los términos de una sucesión
toman valores inferiores a cualquier número "k" negativo tan pequeño como queramos, al darle a "n" valores suficientemente grandes, decimos que dicha sucesión tiende a
o que su límite es
. Por tanto, la sucesión es divergente. Lo escribiremos simbólicamente:

Teorema
Toda sucesión de números reales monótona y acotada es convergente. Mas concretamente:
- Una sucesión de números reales creciente y acotada superiormente es convergente.
- Una sucesión de números reales decreciente y acotada inferiormente es convergente.
(pág. 63)
Sucesiones oscilantes
Las sucesiones oscilantes son sucesiones divergentes pero que no tienden ni a ni a
.
Sucesiones alternadas
Una sucesión diremos que es alternada si sus términos van alternando en signo.
(Pág. 63)
Ejercicios
Ejercicios resueltos: Límite de una sucesión
1. Estudiar el comportamiento de las siguientes sucesiones para valores de n avanzados e indicar su límite:
- a)
- b)
2. Comprobar si las siguientes sucesiones tienen límite:
- a)
- b)
Ejercicio: Límite de una sucesión 1. Representa gráficamente las siguientes sucesiones e indica si tienen o no límite, calculándolo en su caso:
|
Ejercicios propuestos
Ejercicios propuestos: Límite de una sucesión |
Actividades y videotutoriales
Los siguientes videotutoriales no solo resumen lo visto hasta ahora sobre límites de sucesiones, sino que profundizan un poco más: