Resolución de triángulos cualesquiera (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 09:07 18 oct 2019
Coordinador (Discusión | contribuciones)
(Teorema de los senos)
← Ir a diferencia anterior
Revisión de 09:09 18 oct 2019
Coordinador (Discusión | contribuciones)
(Teorema del coseno)
Ir a siguiente diferencia →
Línea 289: Línea 289:
|url1=https://www.youtube.com/watch?v=VbxOGZM86l4&list=PL56F1B8468B0DCC96&index=3 |url1=https://www.youtube.com/watch?v=VbxOGZM86l4&list=PL56F1B8468B0DCC96&index=3
|sinopsis=Teorema del coseno con demostración. |sinopsis=Teorema del coseno con demostración.
 +}}
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial 3
 +|duracion=8´45"
 +|url1=https://youtu.be/MAEi8rlflNk?list=PLwCiNw1sXMSCaukmrbPRm2SQuhas4kWS_
 +|sinopsis=Teorema del coseno. Ejemplo.
}} }}
---- ----

Revisión de 09:09 18 oct 2019

Tabla de contenidos

(Pág. 116)

Teorema de los senos

ejercicio

Teorema de los senos


En un triángulo cualquiera se cumplen las siguientes igualdades:

\cfrac{a}{sen \, \hat A}=\cfrac{b}{sen \, \hat B}=\cfrac{c}{sen \, \hat C}


Además, todos estos cocientes son iguales a 2R\,, donde R\, es el radio de la circunferencia circunscrita al triángulo.

ejercicio

Ejemplo: Teorema de los senos


Resuelve el triángulo del que se conocen los siguientes datos:

a = 6 \, m \, , \, \hat B = 45^\circ \, , \, \hat C = 105^\circ



Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema de los senos


(Pág. 117)

5, 6

(Pág. 118)

Teorema del coseno

ejercicio

Teorema del coseno


En un triángulo cualquiera se cumplen la siguiente relación:

c^2=a^2+b^2-2ab \, cos \, \hat C

Analogamente:

b^2=a^2+c^2-2ac \, cos \, \hat B

a^2=b^2+c^2-2bc \, cos \, \hat A

ejercicio

Ejemplo: Teorema del coseno


Las diagonales de un paralelogramo miden 10 cm y 12 cm, y el ángulo que forman es de 48° 15'. Calcular los lados.



Ejercicios propuestos

ejercicio

Ejercicios propuestos: Teorema del coseno


(Pág. 119)

8a,b,d,g; 9

8c,e,f,h

Ejercicios y videotutoriales

En la siguiente tanda de ejercicios tendrás que decidir entre utilizar el teorema de los senos o el del coseno. Pero antes puedes consultar el siguiente enlace para ver algunos ejemplos de aplicación de estos dos teoremas.

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda