Vectores: Coordenadas (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 11:16 26 may 2017
Coordinador (Discusión | contribuciones)
(Operaciones con vectores dados por coordenadas)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Base de vectores en el plano)
Línea 8: Línea 8:
{{p}} {{p}}
(Pág. 174) (Pág. 174)
 +==Introducción==
 +Veamos unos vídeos introductorios para poder comprender mejor el concepto de base.
 +{{p}}
 +{{Video_enlace_pablo
 +|titulo1=Dependencia e independencia lineal de vectores I
 +|duracion=13´47"
 +|url1=https://youtu.be/JRPxZMOr-NI?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Dependencia e independencia lineal de vectores. Ejemplos. Combinación lineal de vectores linealmente independientes.
 +}}
 +{{Video_enlace_pablo
 +|titulo1=Dependencia e independencia lineal de vectores II
 +|duracion=13´47"
 +|url1=https://youtu.be/dmkWSQmim1g?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Dependencia e independencia lineal de vectores. En el plano más de dos vectores son siempre linealmente dependientes.
 +}}
==Base de vectores en el plano== ==Base de vectores en el plano==
-{{Teorema_sin_demo|titulo=Proposición|enunciado=*Dados dos vectores {{sube|porcentaje=+30%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+30%|contenido=<math>\vec{y}</math>}}, con distintas direcciones, cualquier vector del plano, {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}}, se puede poner como combinación lineal de ellos: +{{Teorema|titulo=Proposición|enunciado=*Dados dos vectores {{sube|porcentaje=+30%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+30%|contenido=<math>\vec{y}</math>}}, con distintas direcciones (linealmente independientes), cualquier vector del plano, {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}}, se puede poner como combinación lineal de ellos:
{{p}} {{p}}
-<center><math>\vec{v}=a \vec{x}+b \vec{x}</math></center>+<center><math>\vec{v}=a \vec{x}+b \vec{y}</math></center>
{{p}} {{p}}
*Esta combinación lineal es única, es decir, sólo existen dos números <math>a\,</math> y <math>b\,</math> para los que se cumple la igualdad anterior. *Esta combinación lineal es única, es decir, sólo existen dos números <math>a\,</math> y <math>b\,</math> para los que se cumple la igualdad anterior.
 +|demo=
 +'''1ª parte (Existencia):'''
 +
 +Para la demostración de la primera parte tienes el siguiente videotutorial:
 +
 +{{Video_enlace_matefacil
 +|titulo1=Dos vectores no paralelos generan plano
 +|duracion=18´21"
 +|url1=https://www.youtube.com/watch?v=3QqrQ26YHvI&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=27
 +|sinopsis=Veremos en este video una comprobación geométrica y otra analítica del siguiente resultado:
 +
 +Dados dos vectores {{sube|porcentaje=+30%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+30%|contenido=<math>\vec{y}</math>}}, con distintas direcciones, cualquier vector del plano, {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}}, se puede poner como combinación lineal de ellos:
 +{{p}}
 +<center><math>\vec{v}=a \vec{x}+b \vec{x}</math></center>
 +
 +Nota: En el video hace uso de la regla de Cramer, que se ve en el próximo curso, para resolver un sistema 2x2. También lo puedes resolver, usando en su lugar, el método de sustitución.
 +}}
 +{{p}}
 +'''2ª parte (Unicidad):'''
 +
 +Para la demostración de la segunda parte razonaremos por reducción al absurdo. Supondremos que existen dos combinaciones lineales distintas y llegaremos a una contradicción con la hipótesis de partida.
 +
 +Supongamos que existe dos combinaciones lineales distintas:
 +
 +<center><math>\vec{v}=a \vec{x}+b \vec{y}</math></center>
 +{{p}}
 +<center><math>\vec{v}=a' \vec{x}+b' \vec{y}</math></center>
 +
 +con <math>a \ne a'</math> y <math>b \ne b'</math>
 +
 +Igualando ambas expresiones:
 +{{p}}
 +<center><math>a \vec{x}+b \vec{y}=a' \vec{x}+b' \vec{y}</math></center>
 +
 +de donde:
 +
 +<center><math>(a-a') \vec{x}=(b'-b) \vec{y}</math></center>
 +
 +Y como <math>a \ne a'</math>, podemos pasar dividiendo (a-a') que es distinto de cero:
 +
 +<center><math> \vec{x}=\cfrac{(b'-b)}{(a-a')} \vec{y}</math></center>
 +
 +Pero esta expresión nos dice que los vectores <math>\vec{x}</math> e <math>\vec{y}</math> son proporcionales y que, por tanto, tienen la misma dirección. Esto contradice la hipótesis de partida.
}} }}
{{p}} {{p}}
Estos resultados permiten dar la siguiente definición: Estos resultados permiten dar la siguiente definición:
{{p}} {{p}}
-{{Caja_Amarilla|texto=Se llama '''base''' de un conjunto de vectores del plano a dos vectores {{sube|porcentaje=+30%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+30%|contenido=<math>\vec{y}</math>}}, con distintas direcciones. La representaremos por {{sube|porcentaje=+10%|contenido=<math>B(\vec{x},\vec{y})</math>}}.+{{Caja_Amarilla|texto=Se llama '''base''' de un conjunto de vectores del plano a dos vectores {{sube|porcentaje=+30%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+30%|contenido=<math>\vec{y}</math>}}, con distintas direcciones (linealmente independientes). La representaremos por {{sube|porcentaje=+10%|contenido=<math>B(\vec{x},\vec{y})</math>}}.
}} }}
{{p}} {{p}}
-De esta manera, los resultados anteriores se pueden reenunciar de la siguiente manera:+De esta manera, la proposición anterior se pueden expresar de la siguiente manera:
{{p}} {{p}}
{{Teorema_sin_demo|titulo=Teorema de la base|enunciado=Cualquier vector del plano se puede poner como combinación lineal de los vectores de una base, de forma única. {{Teorema_sin_demo|titulo=Teorema de la base|enunciado=Cualquier vector del plano se puede poner como combinación lineal de los vectores de una base, de forma única.
}} }}
{{p}} {{p}}
 +{{Video_enlace_pablo
 +|titulo1=Base de vectores del plano
 +|duracion=9´49"
 +|url1=https://youtu.be/xRZw8wBYVF0?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Concepto de base de vectores del plano. Ejemplos.
 +}}
 +
===Base ortogonal y ortonormal=== ===Base ortogonal y ortonormal===
-{{Caja_Amarilla|texto=Si los dos vectores de una base del plano son perpendiculares entre sí, se dice que forman una '''base ortogonal'''. Si además ambos tienen módulo 1, se dice que forman una '''base ortonormal'''+{{Caja_Amarilla|texto=Si los dos vectores de una base del plano son perpendiculares entre sí, se dice que forman una '''base ortogonal'''. Si además ambos tienen módulo 1, se dice que forman una '''base ortonormal'''.
}} }}
{{p}} {{p}}
 +===Base canónica de los vectores del plano===
 +{{Caja_Amarilla|texto=La '''base canónica''' o '''base usual''' de los vectores del plano, es una base ortonormal que representaremos por <math>B(\vec{i}, \vec{j})</math>, cuyos vectores se caracterizan por:
 +:1) Estan fijados a un punto común, el origen del sistema de referencia o punto (0,0).
 +:2) Tienen por direcciones la de los ejes de coordenadas.
 +:3) Tienen el mismo sentido que el de los semiejes positivos.}}
 +{{p}}
 +{{Video_enlace_matefacil
 +|titulo1=Base canónica
 +|duracion=9´49"
 +|url1=https://www.youtube.com/watch?v=dsu_XNm8xWM&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=11
 +|sinopsis=Base canónica de vectores del plano.
 +{{p}}
 +Nota: En la segunda parte del video se trata el caso de vectores tridimensionales.}}
==Coordenadas de un vector respecto de una base== ==Coordenadas de un vector respecto de una base==
-{{Caja_Amarilla|texto=Dada una base del plano {{sube|porcentaje=+10%|contenido=<math>B(\vec{x},\vec{y})</math>}}, por el teorema de la base, sabemos que cualquier vector {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}} se puede poner como combinación lineal de los vectores de dicha base, de forma única: <math>\vec{v}=a \vec{x}+b \vec{x}</math>+{{Caja_Amarilla|texto=Dada una base del plano {{sube|porcentaje=+10%|contenido=<math>B(\vec{x},\vec{y})</math>}}, por el teorema de la base, sabemos que cualquier vector {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}} se puede poner como combinación lineal de los vectores de dicha base, de forma única:
 + 
 +<center><math>\vec{v}=a \vec{x}+b \vec{y}</math></center>
*Al par de números <math>(a,b)\,</math> los llamaremos las '''coordenadas''' del vector {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}} respecto de la base {{sube|porcentaje=+10%|contenido=<math>B(\vec{x},\vec{y})</math>}}. Lo expresaremos {{sube|porcentaje=+10%|contenido=<math>\vec{v}=(a,b)</math>}}, o bien, {{sube|porcentaje=+10%|contenido=<math>\vec{v}(a,b)</math>}}. *Al par de números <math>(a,b)\,</math> los llamaremos las '''coordenadas''' del vector {{sube|porcentaje=+30%|contenido=<math>\vec{v}</math>}} respecto de la base {{sube|porcentaje=+10%|contenido=<math>B(\vec{x},\vec{y})</math>}}. Lo expresaremos {{sube|porcentaje=+10%|contenido=<math>\vec{v}=(a,b)</math>}}, o bien, {{sube|porcentaje=+10%|contenido=<math>\vec{v}(a,b)</math>}}.
Línea 38: Línea 118:
}} }}
{{p}} {{p}}
 +{{Videotutoriales|titulo=Coordenadas de un vector respecto de una base|enunciado=
 +{{Video_enlace_pablo
 +|titulo1=Tutorial
 +|duracion=10´49"
 +|url1=https://youtu.be/kHmQtBno6cc
 +|sinopsis=Coordenadas de un vector respecto de una base: Un ejemplo gráfico y otro numérico.
 +}}
 +----
 +{{Video_enlace
 +|titulo1=Ejercicio 1
 +|duracion=4´58"
 +|url1=https://youtu.be/pw7EwZ79KE0
 +|sinopsis=Calcula las coordenadas del vector (7,4) respecto de la base B={(-2,-1);(1,1)}
 +}}
 +{{Video_enlace_pablo
 +|titulo1=Ejercicio 2
 +|duracion=5´35"
 +|url1=https://youtu.be/XJBXM55t2YI?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Expresa el vector (5,-3) como combinación lineal de los vectores (-1,2) y (3,1).
 +}}
 +}}
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=En esta escena podrás poner un vector como combinación lineal de los vectores de una base y obtener sus coordenadas respecto de ella. |descripcion=En esta escena podrás poner un vector como combinación lineal de los vectores de una base y obtener sus coordenadas respecto de ella.
Línea 46: Línea 147:
|descripcion=Ejercicio de autoevaluación en el que podrás poner un vector como combinación lineal de otros dos no alineados y que, por tanto, constituyen una base de vectores del plano. En consecuncia podrás averiguar sus coordenadas respecto de dicha base, que serán los números por los que hay que multiplicar los vectores de la base para obtener el vector dado. |descripcion=Ejercicio de autoevaluación en el que podrás poner un vector como combinación lineal de otros dos no alineados y que, por tanto, constituyen una base de vectores del plano. En consecuncia podrás averiguar sus coordenadas respecto de dicha base, que serán los números por los que hay que multiplicar los vectores de la base para obtener el vector dado.
|enlace=[https://ggbm.at/eeQdvthz Autoevaluación: Combinación lineal de vectores. Bases] |enlace=[https://ggbm.at/eeQdvthz Autoevaluación: Combinación lineal de vectores. Bases]
-}} 
-{{p}} 
-{{Video_enlace_fonemato 
-|titulo1=2 ejercicios 
-|duracion=13´40" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0802-dos-ejercicios-4#.VC2a0xa7ZV8 
-|sinopsis=*Demostración de que dados dos vectores {{sube|porcentaje=+10%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+10%|contenido=<math>\vec{y}</math>}}, con distintas direcciones, cualquier vector del plano, {{sube|porcentaje=+10%|contenido=<math>\vec{v}</math>}}, se puede poner como combinación lineal de ellos. 
-*Ejercicio: Si <math>\vec{u}=(2,1)</math>, <math>\vec{v}(3,-4)</math> y <math>\vec{z}=(1,6)</math>, expresa <math>\vec{z}</math> como combinación lineal de los otros dos vectores. 
}} }}
{{p}} {{p}}
Línea 102: Línea 195:
:b) <math>\vec{u}+\vec{v} = (7,1)</math> :b) <math>\vec{u}+\vec{v} = (7,1)</math>
-2. Sean <math>\vec{u}=(0,-1)</math>, <math>\vec{v}=(-1,0)</math> y <math>\vec{w}=(2,-3)</math>. Calcula "a" y "b" para que <math>\vec{w}=a\, \vec{u} + b\, \vec{v}</math>.+2. Sean <math>\vec{u}=(0,-1)</math>, <math>\vec{v}=(-1,0)</math> y <math>\vec{w}=(2,-3)</math>.
 +:Calcula "a" y "b" para que <math>\vec{w}=a\, \vec{u} + b\, \vec{v}</math>.
|sol= |sol=
1a) Utiliza la siguiente escena: 1a) Utiliza la siguiente escena:
Línea 124: Línea 218:
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=En esta escena podrás poner un vector como combinación lineal de los vectores de una base y obtener sus coordenadas respecto de ella. |descripcion=En esta escena podrás poner un vector como combinación lineal de los vectores de una base y obtener sus coordenadas respecto de ella.
-|enlace=[https://ggbm.at/qaeePE4d Combinación lineal de vectores. Bases]+|enlace=[http://ggbm.at/qaeePE4d Combinación lineal de vectores. Bases]
}} }}
Línea 130: Línea 224:
{{p}} {{p}}
{{Videotutoriales|titulo=Operaciones con vectores dados por coordenadas|enunciado= {{Videotutoriales|titulo=Operaciones con vectores dados por coordenadas|enunciado=
 +{{Video_enlace_tutomate
 +|titulo1=Operaciones con vectores
 +|duracion=6´38"
 +|url1=https://www.youtube.com/watch?v=xIG0v9QtPrg
 +|sinopsis=
 +*Suma y resta de vectores.
 +*Multiplicación de un vector por un escalar.
 +*Ejemplos y ejercicios.
 +}}
 +{{Video_enlace_pildoras
 +|titulo1=Suma y resta de vectores
 +|duracion=11'23"
 +|sinopsis=Suma y resta de vectores
 +|url1=https://youtu.be/OkiIB2fU_JM?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
{{Video_enlace_matefacil {{Video_enlace_matefacil
|titulo1=Vectores en el plano |titulo1=Vectores en el plano
Línea 145: Línea 254:
|sinopsis=Interpretación geométrica de la suma de vectores y multiplicación de un vector por un escalar. Ejemplos. |sinopsis=Interpretación geométrica de la suma de vectores y multiplicación de un vector por un escalar. Ejemplos.
}} }}
 +{{Video_enlace_matefacil
 +|titulo1=Combinación lineal de vectores
 +|duracion=20´33"
 +|url1=https://www.youtube.com/watch?v=RtCm7oRrtGk&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=12
 +|sinopsis=Combinación lineal de vectores del plano.
 +{{p}}
 +Nota: En la segunda parte del video se trata el caso de vectores tridimensionales.}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
|titulo1=Suma de vectores. |titulo1=Suma de vectores.
|duracion=24´12" |duracion=24´12"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/07-suma-de-vectores-o-composicion-de-traslaciones-como-prefieras#.VC2KPxa7ZV8+|url1=https://www.youtube.com/watch?v=W1ZVmYI__fY&index=14&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Suma de vectores: método del paralelogramo. *Suma de vectores: método del paralelogramo.
Línea 157: Línea 273:
|titulo1=Producto de un escalar por un vector. |titulo1=Producto de un escalar por un vector.
|duracion=20´52" |duracion=20´52"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/08-producto-de-un-escalar-numero-real-por-un-vector#.VC2NLBa7ZV8+|url1=https://www.youtube.com/watch?v=Yn-g_bA3Zjg&index=15&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Producto de un escalar por un vector *Producto de un escalar por un vector
*Propiedades *Propiedades
*Vectores colineales *Vectores colineales
 +}}
 +{{Video_enlace_pablo
 +|titulo1=Producto de un escalar por un vector
 +|duracion=9´46"
 +|url1=https://youtu.be/Yxy8Yo6Z2Ws?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Producto de un escalar por un vector. Ejemplos.
 +}}
 +{{Video_enlace_pablo
 +|titulo1=Suma de vectores
 +|duracion=7´39"
 +|url1=https://youtu.be/5eTJKpnP93I?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Suma de vectores. Ejemplos.
 +}}
 +{{Video_enlace_pablo
 +|titulo1=Combinación lineal de vectores
 +|duracion=7´38"
 +|url1=https://youtu.be/5I9C2hEnhl4?list=PLDofgcGDlFDP3PLa5X06SC7w-njU6albc
 +|sinopsis=Combinación lineal de vectores. Ejemplos.
 +}}
 +----
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 1
 +|duracion=4´56"
 +|url1=https://www.youtube.com/watch?v=i5FNkdPGPV0&index=15&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A
 +|sinopsis=Encontrar la suma de los vectores dados e ilustrar gráficamente:
 +
 +:<math>\vec{u}=(-1,4)</math> y <math>\vec{v}=(3,-2)</math>
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 2
 +|duracion=5´44"
 +|url1=https://www.youtube.com/watch?v=wPdLfatQB3o&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=17
 +|sinopsis=Averigua si los vectores <math>\vec{u}=(3,-1)</math> y <math>\vec{v}=(-9,3)</math> son paralelos o no.
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 3
 +|duracion=7´49"
 +|url1=https://www.youtube.com/watch?v=1Ja74Kn8Bn8&index=26&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A
 +|sinopsis=Si <math>\vec{a}=(3,2)</math>, <math>\vec{b}=(2,-1)</math> y <math>\vec{c}=(7,1)</math>, encuentra <math>s, \, t \in \mathbb{R}</math> tales que <math>\vec{c}=s\vec{a}+t\vec{b}</math>.
}} }}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=4 ejercicios+|titulo1=Ejercicios 4
|duracion=10´17" |duracion=10´17"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0801-cuatro-ejercicios-6#.VC2arha7ZV8+|url1=https://www.youtube.com/watch?v=GDGHqJJTPvE&list=PL811F7AF8E8EC9655&index=16
|sinopsis=Sean <math>\vec{u}=(2,1)\, , \ \vec{v}=(a,-1) \ y \ \vec{z}=(1,b)</math>. Halla "a" y "b" en los siguientes casos: |sinopsis=Sean <math>\vec{u}=(2,1)\, , \ \vec{v}=(a,-1) \ y \ \vec{z}=(1,b)</math>. Halla "a" y "b" en los siguientes casos:
:a) <math>\vec{z}=8\vec{u}-5\vec{v}</math> :a) <math>\vec{z}=8\vec{u}-5\vec{v}</math>
Línea 173: Línea 328:
:d) <math>\vec{z}=\vec{u}-a\vec{v}</math> :d) <math>\vec{z}=\vec{u}-a\vec{v}</math>
}} }}
 +{{p}}
 +{{Video_enlace_fonemato
 +|titulo1=Ejercicios 5
 +|duracion=13´40"
 +|url1=https://www.youtube.com/watch?v=f11bQYqoUUA&index=17&list=PL811F7AF8E8EC9655
 +|sinopsis=*Demostración de que dados dos vectores {{sube|porcentaje=+10%|contenido=<math>\vec{x}</math>}} e {{sube|porcentaje=+10%|contenido=<math>\vec{y}</math>}}, con distintas direcciones, cualquier vector del plano, {{sube|porcentaje=+10%|contenido=<math>\vec{v}</math>}}, se puede poner como combinación lineal de ellos.
 +*Ejercicio: Si <math>\vec{u}=(2,1)</math>, <math>\vec{v}(3,-4)</math> y <math>\vec{z}=(1,6)</math>, expresa <math>\vec{z}</math> como combinación lineal de los otros dos vectores.
 +}}
 +}}
 +{{AI_vitutor
 +|titulo1=Operaciones con vectores dados por coordenadas
 +|descripcion=Ejercicios de autoevaluación sobre operaciones con vectores dados por coordenadas.
 +|url1=http://www.vitutor.com/geo/vec/b_2_e.html
}} }}
{{p}} {{p}}
 +
 +
==Ejercicios propuestos== ==Ejercicios propuestos==

Revisión actual

Tabla de contenidos

(Pág. 174)

Introducción

Veamos unos vídeos introductorios para poder comprender mejor el concepto de base.

Base de vectores en el plano

ejercicio

Proposición


  • Dados dos vectores \vec{x} e \vec{y}, con distintas direcciones (linealmente independientes), cualquier vector del plano, \vec{v}, se puede poner como combinación lineal de ellos:

\vec{v}=a \vec{x}+b \vec{y}

  • Esta combinación lineal es única, es decir, sólo existen dos números a\, y b\, para los que se cumple la igualdad anterior.

Estos resultados permiten dar la siguiente definición:

Se llama base de un conjunto de vectores del plano a dos vectores \vec{x} e \vec{y}, con distintas direcciones (linealmente independientes). La representaremos por B(\vec{x},\vec{y}).

De esta manera, la proposición anterior se pueden expresar de la siguiente manera:

ejercicio

Teorema de la base


Cualquier vector del plano se puede poner como combinación lineal de los vectores de una base, de forma única.

Base ortogonal y ortonormal

Si los dos vectores de una base del plano son perpendiculares entre sí, se dice que forman una base ortogonal. Si además ambos tienen módulo 1, se dice que forman una base ortonormal.

Base canónica de los vectores del plano

La base canónica o base usual de los vectores del plano, es una base ortonormal que representaremos por B(\vec{i}, \vec{j}), cuyos vectores se caracterizan por:

1) Estan fijados a un punto común, el origen del sistema de referencia o punto (0,0).
2) Tienen por direcciones la de los ejes de coordenadas.
3) Tienen el mismo sentido que el de los semiejes positivos.

Coordenadas de un vector respecto de una base

Dada una base del plano B(\vec{x},\vec{y}), por el teorema de la base, sabemos que cualquier vector \vec{v} se puede poner como combinación lineal de los vectores de dicha base, de forma única:

\vec{v}=a \vec{x}+b \vec{y}
  • Al par de números (a,b)\, los llamaremos las coordenadas del vector \vec{v} respecto de la base B(\vec{x},\vec{y}). Lo expresaremos \vec{v}=(a,b), o bien, \vec{v}(a,b).
  • Las coordenadas de los vectores de la base son \vec{x}(1,0) e \vec{y}(0,1), ya que \vec{x}=1 \vec{x}+0 \vec{y} y \vec{y}=0 \vec{x}+1 \vec{y}.

Operaciones con vectores dados por coordenadas

Sean \vec{u}=(x_1,y_1) y \vec{v}=(x_2,y_2) dos vectores del plano:

  • Suma de vectores: \vec{u}+\vec{v}=(x_1+x_2,y_1+y_2)
  • Producto por un número k: k \vec{u}=(k \, x_1,k \, y_1)
  • Combinación lineal: a \vec{u}+b \vec{v}=(a \, x_1+ b \, x_2, a \, y_1+b \, y_2)

(Pág. 175)

ejercicio

Ejercicios resueltos: Operaciones con vectores dados por coordenadas


1. Sean \vec{u}=(2,3) y \vec{v}=(5,-2). Halla y comprueba gráficamente que:

a) 3 \, \vec{u} = (6,9)
b) \vec{u}+\vec{v} = (7,1)

2. Sean \vec{u}=(0,-1), \vec{v}=(-1,0) y \vec{w}=(2,-3).

Calcula "a" y "b" para que \vec{w}=a\, \vec{u} + b\, \vec{v}.


Ejercicios propuestos

ejercicio

Ejercicios propuestos: Coordenadas de un vector


(Pág. 175)

1b,c

1a,b

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda