Puntos y vectores el plano (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 15:55 21 may 2017
Coordinador (Discusión | contribuciones)
(Punto medio de un segmento)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Simétrico de un punto respecto de otro)
Línea 11: Línea 11:
{{Tabla75|celda2=<center>[[Imagen:sistemaref.jpg|200px]]<br> Sistema de referencia ortonormal</center> {{Tabla75|celda2=<center>[[Imagen:sistemaref.jpg|200px]]<br> Sistema de referencia ortonormal</center>
|celda1={{Caja_Amarilla|texto= |celda1={{Caja_Amarilla|texto=
-Un '''sistema de referencia''' del plano consiste en una terna {{sube|porcentaje=+20%|contenido=<math>\mathfrak{R}=\big\{O,(\overrightarrow{x},\overrightarrow{y})\big\}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\,</math>}} es un punto fijo, llamado '''origen''', y {{sube|porcentaje=+20%|contenido=<math>B(\overrightarrow{x},\overrightarrow{y})</math>}} una base de vectores del plano.+Un '''sistema de referencia''' del plano consiste en una terna {{sube|porcentaje=+20%|contenido=<math>\mathfrak{R}=\big\{O,B(\overrightarrow{x},\overrightarrow{y})\big\}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\,</math>}} es un punto fijo, llamado '''origen''', y {{sube|porcentaje=+20%|contenido=<math>B(\overrightarrow{x},\overrightarrow{y})</math>}} una base de vectores del plano.
En este sistema de referencia, cada punto <math>P\,</math> del plano tiene asociado un vector fijo {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{OP}</math>}}, llamado '''vector de posición''' del punto <math>P\,</math>. En este sistema de referencia, cada punto <math>P\,</math> del plano tiene asociado un vector fijo {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{OP}</math>}}, llamado '''vector de posición''' del punto <math>P\,</math>.
Línea 23: Línea 23:
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=En esta escena podrás ver como se obtienen las coordenadas de un punto respecto de un sistema de referencia del plano a partir de su vector de posición. |descripcion=En esta escena podrás ver como se obtienen las coordenadas de un punto respecto de un sistema de referencia del plano a partir de su vector de posición.
-|enlace=[https://ggbm.at/TWjAJah2 Vector de posición y coordenadas de un punto del plano]+|enlace=[http://ggbm.at/TWjAJah2 Vector de posición y coordenadas de un punto del plano]
}} }}
{{p}} {{p}}
Línea 52: Línea 52:
}} }}
{{p}} {{p}}
-{{Videotutoriales|titulo=Vector que une dos puntos|enunciado=+{{Videotutoriales|titulo=Vector que une dos puntos del plano|enunciado=
 +{{Video_enlace_tutomate
 +|titulo1=Tutorial 1
 +|duracion=5´42"
 +|url1=https://www.youtube.com/watch?v=FymIceuv3E4
 +|sinopsis=Vector que une dos puntos del plano. Ejemplos.
 +}}
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial 2
 +|duracion=8'28"
 +|sinopsis=Cómo calcular un vector entre dos puntos
 +|url1=https://youtu.be/r1KOayxAUq8?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Tutorial 3
 +|duracion=8´22"
 +|url1=https://www.youtube.com/watch?v=z_3UHBmg2xs&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=5
 +|sinopsis=Vector que une dos puntos del plano. Ejemplos.
 +}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=Vector fijo asociado a un par ordenado de puntos del plano+|titulo1=Tutorial 3
|duracion=15´47" |duracion=15´47"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/03-vector-fijo-asociado-a-un-par-ordenado-de-puntos-del-plano#.VCxSyBa7ZV8+|url1=https://www.youtube.com/watch?v=JOuEfuP9nco&index=6&list=PL811F7AF8E8EC9655
|sinopsis=Siendo <math>P = (x_0,y_0)</math> y <math>Q = (x_1,y_1)</math> puntos del plano, en este vídeo definimos el concepto de "vector fijo" asociado al par ordenado (P,Q). Visualizamos dicho vector fijo mediante una "flecha" que tiene origen en "P" y extremo en "Q". El vector fijo asociado al par (Q,P) se dice "opuesto" del asociado al par (P,Q). |sinopsis=Siendo <math>P = (x_0,y_0)</math> y <math>Q = (x_1,y_1)</math> puntos del plano, en este vídeo definimos el concepto de "vector fijo" asociado al par ordenado (P,Q). Visualizamos dicho vector fijo mediante una "flecha" que tiene origen en "P" y extremo en "Q". El vector fijo asociado al par (Q,P) se dice "opuesto" del asociado al par (P,Q).
En términos matemáticos, el vector fijo asociado al par ordenado (P,Q) queda identificado mediante el par ordenado de números reales <math>(x_1 - x_0 , y_1 - y_0)</math>, que se obtiene al restar las coordenadas del punto "P" a las coordenadas del punto "Q". De dicho par <math>(x_1 - x_0 , y_1 - y_0)</math> se dice que son las coordenadas del vector fijo. En términos matemáticos, el vector fijo asociado al par ordenado (P,Q) queda identificado mediante el par ordenado de números reales <math>(x_1 - x_0 , y_1 - y_0)</math>, que se obtiene al restar las coordenadas del punto "P" a las coordenadas del punto "Q". De dicho par <math>(x_1 - x_0 , y_1 - y_0)</math> se dice que son las coordenadas del vector fijo.
}} }}
-{{p}}+{{Video_enlace_fonemato
-{{Video_enlace_julioprofe+|titulo1=Signo de las coordenadas de un vector
 +|duracion=19´59"
 +|url1=https://www.youtube.com/watch?v=IW07YQhQuaI&index=7&list=PL811F7AF8E8EC9655
 +|sinopsis=Estudio del signo de las coordenadas de un vector <math>\vec{AB}</math> según la posición del origen A y el extremo B del vector.
 +}}
 +----
 +{{Video_enlace_matefacil
|titulo1=Ejercicio 1 |titulo1=Ejercicio 1
 +|duracion=3´52"
 +|url1=https://www.youtube.com/watch?v=334uweT3y8c&index=6&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A
 +|sinopsis=Calcula las componentes de los vectores <math>\vec{AB}</math>, <math>\vec{BC}</math> y <math>\vec{CA}</math>, siendo A=(4,1), B=(-3,0) y C=(5,-2).
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 2
 +|duracion=4´35"
 +|url1=https://www.youtube.com/watch?v=1-3acARG0q0&index=14&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A
 +|sinopsis=Calcula el vector <math>\vec{AB}</math> y dibújalo anclado al origen, siendo A=(-1,1) y B=(3,2).
 +}}
 +{{Video_enlace_julioprofe
 +|titulo1=Ejercicio 3
|duracion=7´29" |duracion=7´29"
|url1=https://www.youtube.com/watch?v=bKrvqtQtkic |url1=https://www.youtube.com/watch?v=bKrvqtQtkic
Línea 68: Línea 104:
}} }}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=Signo de las coordenadas de un vector+|titulo1=Ejercicio 4
-|duracion=19´59"+
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0301-ejercicio-absolutamente-fundamental#.VCxUDRa7ZV8+
-|sinopsis=Estudio del signo de las coordenadas de un vector <math>\vec{AB}</math> según la posición del origen A y el extremo B del vector.+
-}}+
-{{Video_enlace_fonemato+
-|titulo1=4 ejercicios+
|duracion=9´33" |duracion=9´33"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0302-cuatro-ejercicios#.VCxViha7ZV8+|url1=https://www.youtube.com/watch?v=SiIypV8ZVAQ&index=8&list=PL811F7AF8E8EC9655
-|sinopsis=Siendo <math>P = (x_0,y_0)</math> y <math>Q = (x_1,y_1)</math> puntos del plano, las coordenadas del "vector fijo" asociado al par ordenado (P,Q) son <math>\vec{PQ} = (x_1 - x_0 ; y_1 - y_0)</math>.+|sinopsis=Siendo <math>P = (x_0,y_0)\;</math> y <math>Q = (x_1,y_1)\;</math> puntos del plano, las coordenadas del "vector fijo" asociado al par ordenado (P,Q) son:
 + 
 +<center><math>\vec{PQ} = (x_1 - x_0 ; y_1 - y_0)</math>.</center>
En este vídeo nos dan las coordenadas del vector fijo y las del punto "P" (punto "Q"), pidiéndonos que determinemos las coordenadas del punto "Q" (punto "P"). En este vídeo nos dan las coordenadas del vector fijo y las del punto "P" (punto "Q"), pidiéndonos que determinemos las coordenadas del punto "Q" (punto "P").
}} }}
 +
}} }}
{{p}} {{p}}
 +{{Actividades|titulo=Coordenadas del vector que une dos puntos|enunciado=
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=En esta escena podrás calcular las coordenadas del vector que une dos puntos del plano. |descripcion=En esta escena podrás calcular las coordenadas del vector que une dos puntos del plano.
-|enlace=[https://ggbm.at/H4Db73bD Autoevaluación: Coordenadas del vector que une dos puntos]+|enlace=[http://ggbm.at/H4Db73bD Autoevaluación 1]
 +}}
 +{{AI_vitutor
 +|titulo1=Autoevaluación 2
 +|descripcion=Ejercicios de autoevaluación sobre coordenadas del vector que une dos puntos.
 +|url1=http://www.vitutor.com/geo/vec/b_1_e.html
 +}}
}} }}
{{p}} {{p}}
Línea 100: Línea 140:
|titulo1=Equipolencia de vectores fijos. Vector libre |titulo1=Equipolencia de vectores fijos. Vector libre
|duracion=14´37" |duracion=14´37"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/04-equipolencia-de-vectores-fijos-vector-libre#.VC1S0ha7ZV8+|url1=https://www.youtube.com/watch?v=PhoHBFXoMG4&index=9&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Dos vectores fijos se dicen "equipolentes" si tienen el mismo módulo, dirección y sentido o, equivalentemente, si tienen las mismas coordenadas. *Dos vectores fijos se dicen "equipolentes" si tienen el mismo módulo, dirección y sentido o, equivalentemente, si tienen las mismas coordenadas.
Línea 113: Línea 153:
|titulo1=2 ejercicios |titulo1=2 ejercicios
|duracion=10´42" |duracion=10´42"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0401-dos-ejercicios-5#.VC1-gxa7ZV8+|url1=https://www.youtube.com/watch?v=MsurWyYam1g&index=10&list=PL811F7AF8E8EC9655
|sinopsis=Conocidos 3 puntos del plano hallar un cuarto punto tal que forme con los otros tres un paralelogramo. |sinopsis=Conocidos 3 puntos del plano hallar un cuarto punto tal que forme con los otros tres un paralelogramo.
}} }}
Línea 174: Línea 214:
}} }}
{{p}} {{p}}
 +{{Videotutoriales|titulo=Condición para que tres puntos estén alineados|enunciado=
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial 1
 +|duracion=7'25"
 +|sinopsis=Cómo averiguar si tres puntos están alineados
 +|url1=https://youtu.be/SSkwa9oS0dY?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=Condición para que tres puntos estén alineados+|titulo1=Tutorial 2
|duracion=20´52" |duracion=20´52"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/08-producto-de-un-escalar-numero-real-por-un-vector#.VC2NLBa7ZV8+|url1=https://www.youtube.com/watch?v=Yn-g_bA3Zjg&index=15&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Producto de un escalar por un vector *Producto de un escalar por un vector
Línea 183: Línea 230:
*Vectores colineales *Vectores colineales
*Condición para que tres puntos estén alineados *Condición para que tres puntos estén alineados
 +}}
 +}}
 +{{AI_vitutor
 +|titulo1=Condición para que tres puntos estén alineados
 +|descripcion=Ejercicios de autoevaluación sobre condiciones para que tres puntos estén alineados y división de un segmento en tres partes iguales.
 +|url1=http://www.vitutor.com/geo/vec/b_6_e_1.html
}} }}
{{p}} {{p}}
Línea 228: Línea 281:
<math>M \, \Big( \cfrac{-5+7}{2},\, \cfrac{2+(-4)}{2} \Big)=(1,-1)</math> <math>M \, \Big( \cfrac{-5+7}{2},\, \cfrac{2+(-4)}{2} \Big)=(1,-1)</math>
}} }}
 +{{p}}
{{Videotutoriales|titulo=Punto medio de un segmento|enunciado= {{Videotutoriales|titulo=Punto medio de un segmento|enunciado=
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial 1
 +|duracion=4'43"
 +|sinopsis=Calcular el punto medio entre dos puntos
 +|url1=https://youtu.be/b3Yn_Ab1IQo?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=Punto medio de un segmento.+|titulo1=Tutorial 2
|duracion=10´06" |duracion=10´06"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/13-punto-medio-de-un-segmento#.VC2f9ha7ZV8+|url1=https://www.youtube.com/watch?v=US5k3TGwo5I&index=27&list=PL811F7AF8E8EC9655
|sinopsis=Obtención de la fórmula del punto medio de un segmento AB. Ejemplos |sinopsis=Obtención de la fórmula del punto medio de un segmento AB. Ejemplos
}} }}
{{Video_enlace_abel {{Video_enlace_abel
-|titulo1=Punto medio de un segmento.+|titulo1=Tutorial 3
|duracion=16´30" |duracion=16´30"
|url1=https://www.youtube.com/watch?v=a4vCc4ecFf0 |url1=https://www.youtube.com/watch?v=a4vCc4ecFf0
-|sinopsis=Este vídeo explica como se calcula las coordenadas del punto medio de un segmento y lo ilustra con los siguientes ejemplos:+|sinopsis=Este vídeo explica como se calcula las coordenadas del punto medio de un segmento y lo ilustra con un ejemplo.
- +
-1) +
- +
}} }}
 +----
{{Video_enlace_julioprofe {{Video_enlace_julioprofe
-|titulo1=Ejemplo+|titulo1=Ejercicio 1
|duracion=2´02" |duracion=2´02"
|url1=https://www.youtube.com/watch?v=eRlmoF2Z3I4 |url1=https://www.youtube.com/watch?v=eRlmoF2Z3I4
|sinopsis= Halla el punto medio del segmento de extremos (-17,3) y (5,-29). |sinopsis= Halla el punto medio del segmento de extremos (-17,3) y (5,-29).
- +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 2
 +|duracion=3´18"
 +|url1=https://www.youtube.com/watch?v=sYEzkX-Q1Rw&list=PLo7_lpX1yruMcmderWiEIPJdCp4FMHY8w&index=1
 +|sinopsis= Halla el punto medio del segmento de extremos A(-2,-4) y B(4,-2).
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 3
 +|duracion=5´23"
 +|url1=https://www.youtube.com/watch?v=TrUnaI92qwI&list=PLo7_lpX1yruMcmderWiEIPJdCp4FMHY8w&index=2
 +|sinopsis= Halla el punto medio del segmento de extremos A(-2,3/4) y B(1/6,3).
 +}}
 +{{Video_enlace_virtual
 +|titulo1=Ejercicio 4
 +|duracion=3´36"
 +|url1=https://www.youtube.com/watch?v=TrUnaI92qwI&list=PLo7_lpX1yruMcmderWiEIPJdCp4FMHY8w&index=2
 +|sinopsis= Halla el punto medio del segmento de extremos A(3.5,3/2) y B(5.3,7/5).
}} }}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=Ejercicio (Trisección de un segmento)+|titulo1=Ejercicio 5 (Trisección de un segmento)
|duracion=7´59" |duracion=7´59"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/1301-ejercicio-triseccion-de-un-segmento#.VC2gVRa7ZV8+|url1=https://www.youtube.com/watch?v=lccpHWujcjc&index=28&list=PL811F7AF8E8EC9655
|sinopsis=En este video aprendemos a determinar los puntos que dividen un segmento dado en tres partes iguales. |sinopsis=En este video aprendemos a determinar los puntos que dividen un segmento dado en tres partes iguales.
}} }}
 +}}
 +{{AI_vitutor
 +|titulo1=Punto medio de un segmento
 +|descripcion=Ejercicios de autoevaluación sobre el cálculo del punto medio de un segmento.
 +|url1=http://www.vitutor.com/geo/vec/b_6_e.html
}} }}
}} }}
Línea 306: Línea 386:
}} }}
{{p}} {{p}}
 +{{Video_enlace_8cifras
 +|titulo1=Simétrico de un punto respecto de otro
 +|duracion=6'42"
 +|sinopsis=
 +:a) Calcular el simétrico del punto A(1,6) respecto del punto B(4,3).
 +:b) Calcular el simétrico del punto B respecto de A.
 +|url1=https://youtu.be/lCwVliB6vi4
 +}}
 +{{AI_vitutor
 +|titulo1=Puntos simétricos
 +|descripcion=Ejercicios de autoevaluación sobre puntos simétricos.
 +|url1=http://www.vitutor.com/geo/vec/b_6_e_2.html
 +}}
 +
 +==Ejercicios==
 +{{Videotutoriales|titulo=Puntos y vectores en el plano|enunciado=
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 1
 +|duracion=6´34"
 +|url1=https://www.youtube.com/watch?v=dgb2MnOrIUc&index=20&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A
 +|sinopsis=Si A, B y C son los tres vértices de un triángulo, calcula <math>\vec{AB}+\vec{BC}+\vec{CA}</math>.
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 2
 +|duracion=7´13"
 +|url1=https://www.youtube.com/watch?v=zCOKIzglLpA&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=25
 +|sinopsis=Sea C un punto sobre el segmento AB tal que la distancia de C a B es el doble que la distancia de C a A. Sean <math>\vec{a}=\vec{OA}</math>, <math>\vec{b}=\vec{OB}</math> y <math>\vec{c}=\vec{OC}</math>, donde O es el origen. Demostrar que <math>\vec{c}=\cfrac{2}{3}\vec{a}+\cfrac{1}{3}\vec{b}</math>.
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 3
 +|duracion=7´38"
 +|url1=https://www.youtube.com/watch?v=PFe7i5pkRy0&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=28
 +|sinopsis=Haciendo uso de vectores, demuestra que el segmento que une los puntos medios de los lados de un triángulo, es paralelo al tercer lado, y tiene la mitad de su longitud.
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Ejercicio 4
 +|duracion=10´21"
 +|url1=https://www.youtube.com/watch?v=JcxUGq3WG90&index=29&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A
 +|sinopsis=Haciendo uso de vectores, demuestra que las diagonales de un paralelogramo se cortan en su punto medio.
 +}}
 +{{Video_enlace_fonemato
 +|titulo1=Ejercicios 5
 +|duracion=17´13"
 +|url1=https://www.youtube.com/watch?v=cilcF3bHp8w&index=18&list=PL811F7AF8E8EC9655
 +|sinopsis=En éste video veremos 6 ejercicios en los que jugaremos con vectores colineales.
 +
 +}}
 +{{Video_enlace_fonemato
 +|titulo1=Ejercicios 6
 +|duracion=11'11"
 +|url1=https://www.youtube.com/watch?v=3ezG3I-0ze4&index=22&list=PL811F7AF8E8EC9655
 +|sinopsis=En éste video veremos 6 ejercicios en los que jugaremos con la suma de vectores y con el producto escalar de vectores:
 +
 +Sean los puntos A(2,3), B(-1,4), C(0,3) y D(k,6). Determina "k" en cada uno de los siguientes casos:
 +
 +1) <math>\vec{AB} \cdot \vec{BD}=0</math>;{{b4}}2) <math>\vec{CD} \cdot \vec{DA}=-9</math>;{{b4}}3) <math>(2\vec{CB}) \cdot \vec{DC}=7</math>;{{b4}}4) <math>(\vec{AD}-\vec{CB} \cdot \vec{DA}=-6</math>
 +
 +Además de estos cuatro ejercicios hay otros dos que ilustran lo que "no puede ser", y que podrás ver al final del video.
 +}}
 +{{Video_enlace_fonemato
 +|titulo1=Ejercicios 7
 +|duracion=17'13"
 +|url1=https://www.youtube.com/watch?v=cilcF3bHp8w&index=18&list=PL811F7AF8E8EC9655
 +|sinopsis=Si <math>|\overline{PQ}|=2</math>, posicione los puntos A, B, C, D, E y F en cada uno de los siguientes casos:
 +
 +1) <math>\vec{QA}=3 \vec{PQ}=0</math>;{{b4}}2) <math>\vec{BP}=-2 \vec{PQ}</math>;{{b4}}3) <math>(\vec{QC})=2\vec{PQ}</math>;{{b4}}4) <math>\vec{DP}=\cfrac{1}{2}\vec{PQ}</math>;{{b4}}5) <math>\vec{EP}=2\vec{QP}</math>;{{b4}}6) <math>\vec{FP}=-\cfrac{1}{2}\vec{FQ}</math>
 +
 +}}
 +}}
 +
===Ejercicios propuestos=== ===Ejercicios propuestos===
{{ejercicio {{ejercicio
Línea 320: Línea 470:
==Traslaciones y homotecias== ==Traslaciones y homotecias==
{{Videotutoriales|titulo=Traslaciones y homotecias|enunciado= {{Videotutoriales|titulo=Traslaciones y homotecias|enunciado=
 +{{Video_enlace_pildoras
 +|titulo1=Traslación de un punto mediante un vector
 +|duracion=9'47"
 +|sinopsis=Traslación de un punto mediante un vector.
 +
 +Advertencia: En este video cuando dice que suma un punto {{sube|porcentaje=+20%|contenido=<math>P\;</math>}} con un vector {{sube|porcentaje=+50%|contenido=<math>\overrightarrow{AB}</math>}}, en realidad lo que está haciendo es sumar dos vectores: {{sube|porcentaje=+50%|contenido=<math>\overrightarrow{OP}</math>}} y {{sube|porcentaje=+50%|contenido=<math>\overrightarrow{AB}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\;</math> es el origen de coordenadas}}.
 +|url1=https://youtu.be/YXj0nGT0Ck4?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
|titulo1=Traslaciones |titulo1=Traslaciones
|duracion=4´44" |duracion=4´44"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/06-traslaciones#.VC2GxBa7ZV8+|url1=https://www.youtube.com/watch?v=CKDopoE6UFU&index=12&list=PL811F7AF8E8EC9655
|sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos '''traslación''' de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>. |sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos '''traslación''' de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>.
Obvio: si <math>u = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es A' = (a_1+u_1,u_2+u_2). Obvio: si <math>u = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es A' = (a_1+u_1,u_2+u_2).
Línea 332: Línea 490:
|titulo1=2 ejercicios |titulo1=2 ejercicios
|duracion=10´26" |duracion=10´26"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0601-dos-ejercicios-5#.VC2IlRa7ZV8+|url1=https://www.youtube.com/watch?v=l8LBY6vP_b8&index=13&list=PL811F7AF8E8EC9655
|sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos traslación de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>. |sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos traslación de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>.
Obvio: si<math> \vec{u} = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es <math>A' = (a_1+u_1,u_2+u_2)</math>. Obvio: si<math> \vec{u} = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es <math>A' = (a_1+u_1,u_2+u_2)</math>.
Línea 343: Línea 501:
|titulo1=Suma de vectores como composición de traslaciones |titulo1=Suma de vectores como composición de traslaciones
|duracion=24´12" |duracion=24´12"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/07-suma-de-vectores-o-composicion-de-traslaciones-como-prefieras#.VC2KPxa7ZV8+|url1=https://www.youtube.com/watch?v=W1ZVmYI__fY&index=14&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Suma de vectores: método del paralelogramo. *Suma de vectores: método del paralelogramo.
Línea 354: Línea 512:
|titulo1=Homotecias |titulo1=Homotecias
|duracion=6´23" |duracion=6´23"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/09-homotecias#.VC2JABa7ZV8+|url1=https://www.youtube.com/watch?v=0aO8A1boeiM&index=19&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Llamamos '''homotecia''' de centro en el punto "P" y razón "k" a la transformación que a cada punto A del plano le asocia el punto A' tal que el vector fijo <math>\vec{PA'}</math> es el producto del número real "k" por el vector fijo <math>\vec{PA'}</math>. *Llamamos '''homotecia''' de centro en el punto "P" y razón "k" a la transformación que a cada punto A del plano le asocia el punto A' tal que el vector fijo <math>\vec{PA'}</math> es el producto del número real "k" por el vector fijo <math>\vec{PA'}</math>.
Línea 364: Línea 522:
{{p}} {{p}}
-==Operaciones con vectores== 
-{{Videotutoriales|titulo=Operaciones con vectores|enunciado= 
-{{Video_enlace_fonemato 
-|titulo1=6 ejercicios 
-|duracion=17´13" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0803-seis-ejercicios#.VC2Zaxa7ZV8 
-|sinopsis=En éste video jugamos con vectores colineales. 
-}} 
-{{p}} 
-{{Video_enlace_fonemato 
-|titulo1=6 ejercicios 
-|duracion=11'11" 
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/1002-seis-ejercicios#.VC2S-xa7ZV8 
-|sinopsis=En este video jugamos con la suma de vectores y con el producto escalar de vectores. 
- 
-}} 
-}} 
[[Categoría: Matemáticas]][[Categoría: Geometría]] [[Categoría: Matemáticas]][[Categoría: Geometría]]

Revisión actual

Tabla de contenidos

(Pág. 188)

Sistema de referencia en el plano

Un sistema de referencia del plano consiste en una terna \mathfrak{R}=\big\{O,B(\overrightarrow{x},\overrightarrow{y})\big\}, donde O\, es un punto fijo, llamado origen, y B(\overrightarrow{x},\overrightarrow{y}) una base de vectores del plano.

En este sistema de referencia, cada punto P\, del plano tiene asociado un vector fijo \overrightarrow{OP}, llamado vector de posición del punto P\,.

Si el vector \overrightarrow{OP} tiene coordenadas (a,b)\, respecto de la base B(\overrightarrow{x},\overrightarrow{y}), el punto P\, diremos que tiene coordenadas (a,b)\, respecto del sistema de referencia \mathfrak{R}.

Normalmente trabajaremos con un sistema de referencia ortonormal, que es aquel en el que la base es ortonormal.


Sistema de referencia ortonormal

Coordenadas del vector que une dos puntos

ejercicio

Coordenadas del vector que une dos puntos


Dados dos puntos del plano de coordenadas A(x_1,y_1)\, y B(x_2,y_2)\,, respecto de un sistema de referencia \mathfrak{R}, entonces:

\overrightarrow{AB}=(x_2-x_1,y_2-y_1)

Vectores equipolentes

ejercicio

Proposición


Dos vectores son equipolentes si y sólo si tienen las mismas coordenadas.

Condición para que tres puntos estén alineados

ejercicio

Condición para que tres puntos estén alineados


Los puntos del plano A(x_1,y_1)\,, B(x_2,y_2)\, y C(x_3,y_3)\,, están alineados si \vec{AB} y \vec{BC} son vectores paralelos, es decir, si sus coordenadas son proporcionales:

    

\cfrac{x_2-x_1}{x_3-x_2}=\cfrac{y_2-y_1}{y_3-y_2}

ejercicio

Ejercicio resuelto


Averigua el valor de "m" para que P(1,4), Q(5,-2) y R(6,m) estén alineados.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Puntos y vectores en el plano


(Pág. 189)

1, 2, 3

Punto medio de un segmento

ejercicio

Punto medio de un segmento


Las coordenadas del punto medio, M\,, de un segmento de extremos A(x_1,y_1)\, y B(x_2,y_2)\, son:


M \, \Big( \cfrac{x_1+x_2}{2},\, \cfrac{y_1+y_2}{2} \Big)

Simétrico de un punto respecto de otro

Para calcular el punto simétrico de un punto respecto de otro, utilizaremos la anterior fórmula del punto medio, tomando como datos los puntos A y M y como incógnita el punto B. Luego despejaremos de las ecuaciones resultantes las coordenadas del punto B.

También podemos hacer uso de la siguiente fórmula:

ejercicio

Simétrico de un punto respecto de otro


El punto simétrico de A(x,y)\, respecto del punto P(a,b)\, es:


A'=(2a-x,2b-y)\,.

ejercicio

Ejercicios resueltos


1. Halla el simétrico, A', del punto A(7,4) respecto de P(3,-11).

2. Dados los puntos M(7,4) y N(-2,1), halla un punto P en el segmento MN tal que la distancia de M a P sea la mitad de la distancia de P a N.

Ejercicios

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Puntos y vectores el plano


(Pág. 190)

4a,b,e

4c,d

Traslaciones y homotecias

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda