Puntos y vectores el plano (1ºBach)

De Wikipedia

(Diferencia entre revisiones)
Revisión de 17:16 28 jun 2017
Coordinador (Discusión | contribuciones)
(Condición para que tres puntos estén alineados)
← Ir a diferencia anterior
Revisión actual
Coordinador (Discusión | contribuciones)
(Simétrico de un punto respecto de otro)
Línea 11: Línea 11:
{{Tabla75|celda2=<center>[[Imagen:sistemaref.jpg|200px]]<br> Sistema de referencia ortonormal</center> {{Tabla75|celda2=<center>[[Imagen:sistemaref.jpg|200px]]<br> Sistema de referencia ortonormal</center>
|celda1={{Caja_Amarilla|texto= |celda1={{Caja_Amarilla|texto=
-Un '''sistema de referencia''' del plano consiste en una terna {{sube|porcentaje=+20%|contenido=<math>\mathfrak{R}=\big\{O,(\overrightarrow{x},\overrightarrow{y})\big\}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\,</math>}} es un punto fijo, llamado '''origen''', y {{sube|porcentaje=+20%|contenido=<math>B(\overrightarrow{x},\overrightarrow{y})</math>}} una base de vectores del plano.+Un '''sistema de referencia''' del plano consiste en una terna {{sube|porcentaje=+20%|contenido=<math>\mathfrak{R}=\big\{O,B(\overrightarrow{x},\overrightarrow{y})\big\}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\,</math>}} es un punto fijo, llamado '''origen''', y {{sube|porcentaje=+20%|contenido=<math>B(\overrightarrow{x},\overrightarrow{y})</math>}} una base de vectores del plano.
En este sistema de referencia, cada punto <math>P\,</math> del plano tiene asociado un vector fijo {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{OP}</math>}}, llamado '''vector de posición''' del punto <math>P\,</math>. En este sistema de referencia, cada punto <math>P\,</math> del plano tiene asociado un vector fijo {{sube|porcentaje=+30%|contenido=<math>\overrightarrow{OP}</math>}}, llamado '''vector de posición''' del punto <math>P\,</math>.
Línea 23: Línea 23:
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=En esta escena podrás ver como se obtienen las coordenadas de un punto respecto de un sistema de referencia del plano a partir de su vector de posición. |descripcion=En esta escena podrás ver como se obtienen las coordenadas de un punto respecto de un sistema de referencia del plano a partir de su vector de posición.
-|enlace=[https://ggbm.at/TWjAJah2 Vector de posición y coordenadas de un punto del plano]+|enlace=[http://ggbm.at/TWjAJah2 Vector de posición y coordenadas de un punto del plano]
}} }}
{{p}} {{p}}
Línea 59: Línea 59:
|sinopsis=Vector que une dos puntos del plano. Ejemplos. |sinopsis=Vector que une dos puntos del plano. Ejemplos.
}} }}
-{{Video_enlace_matefacil+{{Video_enlace_pildoras
|titulo1=Tutorial 2 |titulo1=Tutorial 2
 +|duracion=8'28"
 +|sinopsis=Cómo calcular un vector entre dos puntos
 +|url1=https://youtu.be/r1KOayxAUq8?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
 +{{Video_enlace_matefacil
 +|titulo1=Tutorial 3
|duracion=8´22" |duracion=8´22"
|url1=https://www.youtube.com/watch?v=z_3UHBmg2xs&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=5 |url1=https://www.youtube.com/watch?v=z_3UHBmg2xs&list=PL9SnRnlzoyX2-qH2lY3o5Lhv9f6za9o9A&index=5
Línea 111: Línea 117:
}} }}
{{p}} {{p}}
 +{{Actividades|titulo=Coordenadas del vector que une dos puntos|enunciado=
{{Geogebra_enlace {{Geogebra_enlace
|descripcion=En esta escena podrás calcular las coordenadas del vector que une dos puntos del plano. |descripcion=En esta escena podrás calcular las coordenadas del vector que une dos puntos del plano.
-|enlace=[https://ggbm.at/H4Db73bD Autoevaluación: Coordenadas del vector que une dos puntos]+|enlace=[http://ggbm.at/H4Db73bD Autoevaluación 1]
 +}}
 +{{AI_vitutor
 +|titulo1=Autoevaluación 2
 +|descripcion=Ejercicios de autoevaluación sobre coordenadas del vector que une dos puntos.
 +|url1=http://www.vitutor.com/geo/vec/b_1_e.html
 +}}
}} }}
{{p}} {{p}}
Línea 201: Línea 214:
}} }}
{{p}} {{p}}
 +{{Videotutoriales|titulo=Condición para que tres puntos estén alineados|enunciado=
 +{{Video_enlace_pildoras
 +|titulo1=Tutorial 1
 +|duracion=7'25"
 +|sinopsis=Cómo averiguar si tres puntos están alineados
 +|url1=https://youtu.be/SSkwa9oS0dY?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
-|titulo1=Condición para que tres puntos estén alineados+|titulo1=Tutorial 2
|duracion=20´52" |duracion=20´52"
|url1=https://www.youtube.com/watch?v=Yn-g_bA3Zjg&index=15&list=PL811F7AF8E8EC9655 |url1=https://www.youtube.com/watch?v=Yn-g_bA3Zjg&index=15&list=PL811F7AF8E8EC9655
Línea 210: Línea 230:
*Vectores colineales *Vectores colineales
*Condición para que tres puntos estén alineados *Condición para que tres puntos estén alineados
 +}}
 +}}
 +{{AI_vitutor
 +|titulo1=Condición para que tres puntos estén alineados
 +|descripcion=Ejercicios de autoevaluación sobre condiciones para que tres puntos estén alineados y división de un segmento en tres partes iguales.
 +|url1=http://www.vitutor.com/geo/vec/b_6_e_1.html
}} }}
{{p}} {{p}}
Línea 257: Línea 283:
{{p}} {{p}}
{{Videotutoriales|titulo=Punto medio de un segmento|enunciado= {{Videotutoriales|titulo=Punto medio de un segmento|enunciado=
-{{Video_enlace_fonemato+{{Video_enlace_pildoras
|titulo1=Tutorial 1 |titulo1=Tutorial 1
 +|duracion=4'43"
 +|sinopsis=Calcular el punto medio entre dos puntos
 +|url1=https://youtu.be/b3Yn_Ab1IQo?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
 +{{Video_enlace_fonemato
 +|titulo1=Tutorial 2
|duracion=10´06" |duracion=10´06"
|url1=https://www.youtube.com/watch?v=US5k3TGwo5I&index=27&list=PL811F7AF8E8EC9655 |url1=https://www.youtube.com/watch?v=US5k3TGwo5I&index=27&list=PL811F7AF8E8EC9655
Línea 265: Línea 297:
}} }}
{{Video_enlace_abel {{Video_enlace_abel
-|titulo1=Tutorial 2+|titulo1=Tutorial 3
|duracion=16´30" |duracion=16´30"
|url1=https://www.youtube.com/watch?v=a4vCc4ecFf0 |url1=https://www.youtube.com/watch?v=a4vCc4ecFf0
Línea 301: Línea 333:
|sinopsis=En este video aprendemos a determinar los puntos que dividen un segmento dado en tres partes iguales. |sinopsis=En este video aprendemos a determinar los puntos que dividen un segmento dado en tres partes iguales.
}} }}
 +}}
 +{{AI_vitutor
 +|titulo1=Punto medio de un segmento
 +|descripcion=Ejercicios de autoevaluación sobre el cálculo del punto medio de un segmento.
 +|url1=http://www.vitutor.com/geo/vec/b_6_e.html
}} }}
}} }}
Línea 349: Línea 386:
}} }}
{{p}} {{p}}
 +{{Video_enlace_8cifras
 +|titulo1=Simétrico de un punto respecto de otro
 +|duracion=6'42"
 +|sinopsis=
 +:a) Calcular el simétrico del punto A(1,6) respecto del punto B(4,3).
 +:b) Calcular el simétrico del punto B respecto de A.
 +|url1=https://youtu.be/lCwVliB6vi4
 +}}
 +{{AI_vitutor
 +|titulo1=Puntos simétricos
 +|descripcion=Ejercicios de autoevaluación sobre puntos simétricos.
 +|url1=http://www.vitutor.com/geo/vec/b_6_e_2.html
 +}}
 +
==Ejercicios== ==Ejercicios==
{{Videotutoriales|titulo=Puntos y vectores en el plano|enunciado= {{Videotutoriales|titulo=Puntos y vectores en el plano|enunciado=
Línea 378: Línea 429:
|titulo1=Ejercicios 5 |titulo1=Ejercicios 5
|duracion=17´13" |duracion=17´13"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0803-seis-ejercicios#.VC2Zaxa7ZV8+|url1=https://www.youtube.com/watch?v=cilcF3bHp8w&index=18&list=PL811F7AF8E8EC9655
|sinopsis=En éste video veremos 6 ejercicios en los que jugaremos con vectores colineales. |sinopsis=En éste video veremos 6 ejercicios en los que jugaremos con vectores colineales.
}} }}
-{{p}} 
{{Video_enlace_fonemato {{Video_enlace_fonemato
|titulo1=Ejercicios 6 |titulo1=Ejercicios 6
|duracion=11'11" |duracion=11'11"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/1002-seis-ejercicios#.VC2S-xa7ZV8+|url1=https://www.youtube.com/watch?v=3ezG3I-0ze4&index=22&list=PL811F7AF8E8EC9655
-|sinopsis=En éste video veremos 6 ejercicios en los que jugaremos con la suma de vectores y con el producto escalar de vectores.+|sinopsis=En éste video veremos 6 ejercicios en los que jugaremos con la suma de vectores y con el producto escalar de vectores:
 + 
 +Sean los puntos A(2,3), B(-1,4), C(0,3) y D(k,6). Determina "k" en cada uno de los siguientes casos:
 + 
 +1) <math>\vec{AB} \cdot \vec{BD}=0</math>;{{b4}}2) <math>\vec{CD} \cdot \vec{DA}=-9</math>;{{b4}}3) <math>(2\vec{CB}) \cdot \vec{DC}=7</math>;{{b4}}4) <math>(\vec{AD}-\vec{CB} \cdot \vec{DA}=-6</math>
 + 
 +Además de estos cuatro ejercicios hay otros dos que ilustran lo que "no puede ser", y que podrás ver al final del video.
 +}}
 +{{Video_enlace_fonemato
 +|titulo1=Ejercicios 7
 +|duracion=17'13"
 +|url1=https://www.youtube.com/watch?v=cilcF3bHp8w&index=18&list=PL811F7AF8E8EC9655
 +|sinopsis=Si <math>|\overline{PQ}|=2</math>, posicione los puntos A, B, C, D, E y F en cada uno de los siguientes casos:
 + 
 +1) <math>\vec{QA}=3 \vec{PQ}=0</math>;{{b4}}2) <math>\vec{BP}=-2 \vec{PQ}</math>;{{b4}}3) <math>(\vec{QC})=2\vec{PQ}</math>;{{b4}}4) <math>\vec{DP}=\cfrac{1}{2}\vec{PQ}</math>;{{b4}}5) <math>\vec{EP}=2\vec{QP}</math>;{{b4}}6) <math>\vec{FP}=-\cfrac{1}{2}\vec{FQ}</math>
}} }}
Línea 406: Línea 470:
==Traslaciones y homotecias== ==Traslaciones y homotecias==
{{Videotutoriales|titulo=Traslaciones y homotecias|enunciado= {{Videotutoriales|titulo=Traslaciones y homotecias|enunciado=
 +{{Video_enlace_pildoras
 +|titulo1=Traslación de un punto mediante un vector
 +|duracion=9'47"
 +|sinopsis=Traslación de un punto mediante un vector.
 +
 +Advertencia: En este video cuando dice que suma un punto {{sube|porcentaje=+20%|contenido=<math>P\;</math>}} con un vector {{sube|porcentaje=+50%|contenido=<math>\overrightarrow{AB}</math>}}, en realidad lo que está haciendo es sumar dos vectores: {{sube|porcentaje=+50%|contenido=<math>\overrightarrow{OP}</math>}} y {{sube|porcentaje=+50%|contenido=<math>\overrightarrow{AB}</math>}}, donde {{sube|porcentaje=+20%|contenido=<math>O\;</math> es el origen de coordenadas}}.
 +|url1=https://youtu.be/YXj0nGT0Ck4?list=PLwCiNw1sXMSAMNnvvsBGpp778cpwcoDuV
 +}}
{{Video_enlace_fonemato {{Video_enlace_fonemato
|titulo1=Traslaciones |titulo1=Traslaciones
|duracion=4´44" |duracion=4´44"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/06-traslaciones#.VC2GxBa7ZV8+|url1=https://www.youtube.com/watch?v=CKDopoE6UFU&index=12&list=PL811F7AF8E8EC9655
|sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos '''traslación''' de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>. |sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos '''traslación''' de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>.
Obvio: si <math>u = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es A' = (a_1+u_1,u_2+u_2). Obvio: si <math>u = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es A' = (a_1+u_1,u_2+u_2).
Línea 418: Línea 490:
|titulo1=2 ejercicios |titulo1=2 ejercicios
|duracion=10´26" |duracion=10´26"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/0601-dos-ejercicios-5#.VC2IlRa7ZV8+|url1=https://www.youtube.com/watch?v=l8LBY6vP_b8&index=13&list=PL811F7AF8E8EC9655
|sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos traslación de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>. |sinopsis=Siendo <math>\vec{u}</math> un vector libre, llamamos traslación de vector <math>\vec{u}</math> a la transformación que a cada punto A del plano le asocia el punto A' tal que las coordenadas del vector fijo <math>\vec{AA'}</math> coinciden con las de <math>\vec{u}</math>. Del punto A' se dice "trasladado" de A según la traslación de vector <math>\vec{u}</math>.
Obvio: si<math> \vec{u} = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es <math>A' = (a_1+u_1,u_2+u_2)</math>. Obvio: si<math> \vec{u} = (u_1,u_2)</math> y <math>A = (a_1,a_2)</math>, es <math>A' = (a_1+u_1,u_2+u_2)</math>.
Línea 429: Línea 501:
|titulo1=Suma de vectores como composición de traslaciones |titulo1=Suma de vectores como composición de traslaciones
|duracion=24´12" |duracion=24´12"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/07-suma-de-vectores-o-composicion-de-traslaciones-como-prefieras#.VC2KPxa7ZV8+|url1=https://www.youtube.com/watch?v=W1ZVmYI__fY&index=14&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Suma de vectores: método del paralelogramo. *Suma de vectores: método del paralelogramo.
Línea 440: Línea 512:
|titulo1=Homotecias |titulo1=Homotecias
|duracion=6´23" |duracion=6´23"
-|url1=http://matematicasbachiller.com/videos/1-bachillerato/matematicas-de-primero-de-bachillerato/08-vectores-en-el-plano/09-homotecias#.VC2JABa7ZV8+|url1=https://www.youtube.com/watch?v=0aO8A1boeiM&index=19&list=PL811F7AF8E8EC9655
|sinopsis= |sinopsis=
*Llamamos '''homotecia''' de centro en el punto "P" y razón "k" a la transformación que a cada punto A del plano le asocia el punto A' tal que el vector fijo <math>\vec{PA'}</math> es el producto del número real "k" por el vector fijo <math>\vec{PA'}</math>. *Llamamos '''homotecia''' de centro en el punto "P" y razón "k" a la transformación que a cada punto A del plano le asocia el punto A' tal que el vector fijo <math>\vec{PA'}</math> es el producto del número real "k" por el vector fijo <math>\vec{PA'}</math>.

Revisión actual

Tabla de contenidos

(Pág. 188)

Sistema de referencia en el plano

Un sistema de referencia del plano consiste en una terna \mathfrak{R}=\big\{O,B(\overrightarrow{x},\overrightarrow{y})\big\}, donde O\, es un punto fijo, llamado origen, y B(\overrightarrow{x},\overrightarrow{y}) una base de vectores del plano.

En este sistema de referencia, cada punto P\, del plano tiene asociado un vector fijo \overrightarrow{OP}, llamado vector de posición del punto P\,.

Si el vector \overrightarrow{OP} tiene coordenadas (a,b)\, respecto de la base B(\overrightarrow{x},\overrightarrow{y}), el punto P\, diremos que tiene coordenadas (a,b)\, respecto del sistema de referencia \mathfrak{R}.

Normalmente trabajaremos con un sistema de referencia ortonormal, que es aquel en el que la base es ortonormal.


Sistema de referencia ortonormal

Coordenadas del vector que une dos puntos

ejercicio

Coordenadas del vector que une dos puntos


Dados dos puntos del plano de coordenadas A(x_1,y_1)\, y B(x_2,y_2)\,, respecto de un sistema de referencia \mathfrak{R}, entonces:

\overrightarrow{AB}=(x_2-x_1,y_2-y_1)

Vectores equipolentes

ejercicio

Proposición


Dos vectores son equipolentes si y sólo si tienen las mismas coordenadas.

Condición para que tres puntos estén alineados

ejercicio

Condición para que tres puntos estén alineados


Los puntos del plano A(x_1,y_1)\,, B(x_2,y_2)\, y C(x_3,y_3)\,, están alineados si \vec{AB} y \vec{BC} son vectores paralelos, es decir, si sus coordenadas son proporcionales:

    

\cfrac{x_2-x_1}{x_3-x_2}=\cfrac{y_2-y_1}{y_3-y_2}

ejercicio

Ejercicio resuelto


Averigua el valor de "m" para que P(1,4), Q(5,-2) y R(6,m) estén alineados.

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Puntos y vectores en el plano


(Pág. 189)

1, 2, 3

Punto medio de un segmento

ejercicio

Punto medio de un segmento


Las coordenadas del punto medio, M\,, de un segmento de extremos A(x_1,y_1)\, y B(x_2,y_2)\, son:


M \, \Big( \cfrac{x_1+x_2}{2},\, \cfrac{y_1+y_2}{2} \Big)

Simétrico de un punto respecto de otro

Para calcular el punto simétrico de un punto respecto de otro, utilizaremos la anterior fórmula del punto medio, tomando como datos los puntos A y M y como incógnita el punto B. Luego despejaremos de las ecuaciones resultantes las coordenadas del punto B.

También podemos hacer uso de la siguiente fórmula:

ejercicio

Simétrico de un punto respecto de otro


El punto simétrico de A(x,y)\, respecto del punto P(a,b)\, es:


A'=(2a-x,2b-y)\,.

ejercicio

Ejercicios resueltos


1. Halla el simétrico, A', del punto A(7,4) respecto de P(3,-11).

2. Dados los puntos M(7,4) y N(-2,1), halla un punto P en el segmento MN tal que la distancia de M a P sea la mitad de la distancia de P a N.

Ejercicios

Ejercicios propuestos

ejercicio

Ejercicios propuestos: Puntos y vectores el plano


(Pág. 190)

4a,b,e

4c,d

Traslaciones y homotecias

Herramientas personales
* AVISO: Para que te funcionen los applets de Java debes usar Internet Explorer y seguir las instrucciones de la Ayuda del menu de la izquierda